2.6 Logarithm and exponential

Exponential definition

The exponential function is f(x)=axf(x) = a^x; the base aa must be a positive real number but the exponent xx can be any real number. The precise definition doesn’t come up often, but here it is in case you ever need it (defining all these cases is necessary in order to ensure that the resulting function is continuous:

  1. If xx is a positive integer nn, then an=aaa(na^n = a \cdot a \cdots a \quad (n times)
  2. If x=0x=0, then a0=1a^0 = 1
  3. If xx is a negative integer, then an=1ana^{-n} = \frac{1}{a^n}
  4. If xx is a rational number p/qp/q, with q>0q>0, then ap/q=apqa^{p/q} = \sqrt[q]{a^p}
  5. If xx is an irrational number, then it’s defined as the limit of ara^r, where rr is a sequence of rational numbers whose limit is xx.

Note that we would run into trouble at step 4 if we tried to allow negative bases.

Exponential rules

ax+y=axayaxy=axay(ax)y=axy(ab)x=axbx\begin{align*} a^{x+y} &= a^x a^y \\ a^{x-y} &= \frac{a^x}{a^y} \\ (a^x)^y &= a^{xy} \\ (ab)^x &= a^x b^x \end{align*}

Exponential limits

limxax=if a>1limxax=0if a>1limxax=0if 0<a<1limxax=if 0<a<1limh0eh1h=1limn(1+1n)n=e\begin{align*} \lim_{x \to \infty} a^x &= \infty \quad \text{if } a > 1 \\ \lim_{x \to -\infty} a^x &= 0 \quad \text{if } a > 1 \\ \lim_{x \to \infty} a^x &= 0 \quad \text{if } 0 < a < 1 \\ \lim_{x \to -\infty} a^x &= \infty \quad \text{if } 0 < a < 1 \\ \lim_{h \to 0} \frac{e^h - 1}{h} &= 1 \\ \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n &= e \end{align*}

Exponential derivatives and integrals

ddxex=exddxeu=exdudxexdx=exddxax=axlog(a)axdx=axloga(a1)\begin{align*} \frac{d}{dx} e^x &= e^x \\ \frac{d}{dx} e^u &= e^x \frac{du}{dx} \\ \int e^x \, dx &= e^x \\ \frac{d}{dx} a^x &= a^x \log(a) \\ \int a^x \, dx &= \frac{a^x}{\log a} \quad (a \ne 1) \end{align*}

Note that the last two results use the logarithmic function, which we haven’t actually introduced yet (see below).

Logarithm definition

The logarithmic function with base aa is defined as the function satisfying

logax=y    ay=x\log_a x = y \iff a^y = x

If we leave off the base, it is assumed to be base ee, the “natural logarithm”:

logx=logex\log x = \log_e x

in other words,

logx=y    ey=x;\log x = y \iff e^y = x;

the notation lnx\ln x can also be used for this. In some disciplines, when we leave off the base, one assumes the base is 10; statistics is not one of those disciplines. Note that

log(ex)=xelogx=xloge=1.\begin{align*} \log(e^x) &= x \\ e^{\log x} &= x \\ \log e &= 1. \end{align*}

Logarithm rules

loga(xy)=logax+logaylogaxy=logaxlogayloga(xy)=ylogaxlogax=logxloga\begin{align*} \log_a(xy) &= \log_a x + \log_a y \\ \log_a \frac{x}{y} &= \log_a x - \log_a y \\ \log_a (x^y) &= y \log_a x \\ \log_a x &= \frac{\log x}{\log a} \end{align*}

Logarithm limits

If a>1a > 1, then

limxlogax=limx0+logax=\begin{align*} \lim_{x \to \infty} \log_a x = \infty \\ \lim_{x \to 0^+} \log_a x = -\infty \\ \end{align*}

Logarithm derivatives and integrals

ddxlogx=x1ddxlogu=u1dudx1xdx=logxddxlogax=1xloga\begin{align*} \frac{d}{dx} \log x &= x^{-1} \\ \frac{d}{dx} \log u &= u^{-1} \frac{du}{dx} \\ \int \frac{1}{x} \, dx &= \log|x| \\ \frac{d}{dx} \log_a x &= \frac{1}{x \log a} \end{align*}