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In clinical trials and biomedical studies, treatments are compared to determine
which one is effective against illness; however, individuals can react to the
same treatment very differently. We propose a complete process for longitudi-
nal data that identifies subgroups of the population that would benefit from a
specific treatment. A random effects linear model is used to evaluate individ-
ual treatment effects longitudinally where the random effects identify a positive
or negative reaction to the treatment over time. With the individual treatment
effects and characteristics of the patients, various classification algorithms are
applied to build prediction models for subgrouping. While many subgrouping
approaches have been developed recently, most of them do not check its validity.
In this paper, we further propose a simple validation approach which not only
determines if the subgroups used are appropriate and beneficial but also com-
pares methods to predict individual treatment effects. This entire procedure is
readily implemented by existing packages in statistical software. The effective-
ness of the proposed method is confirmed with simulation studies and analysis
of data from the Women Entering Care study on depression.
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1 INTRODUCTION

Depression is a serious illness that can significantly impact one's way of life. Treatments for depression include medication
and cognitive behavioral therapy, among others. Longitudinal data have been studied to compare treatments and assess
the response of a treatment on a patient over time with the goal being to find the most effective treatment. When ana-
lyzing data from the Women Entering Care study, Miranda et al1 found that medication and cognitive behavioral therapy
performed similarly in regards to lowering a depression score, leading to the recommendation of either treatment. The
inability to show which treatment outperforms the other could be interpreted as a failed study; however, this is not the
case. As research emerges on personalized treatment, the focus has shifted from finding one overall beneficial treatment
to identifying a subgroup of the population that would have a positive effect from a given treatment.

For longitudinal data, let Yij be the response for the ith subject at time Tij, where i = 1, … ,n, j = 1, … ,ni, and ni is
the number of times measurements are taken on the ith patient. We suppose that n subjects are independent. To evaluate
the treatment effect over time, the following marginal regression model could be considered:

Yij = 𝛿0 + 𝛿1ZiTij + 𝛿2Tij + 𝜉ij, (1)
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where Zi = 1 or − 1 represents the treatment assignment for patient i, 𝛿 = (𝛿0, 𝛿1, 𝛿2)
′ is the parameter vector, and 𝜉ij

are random errors. Generalized estimating equations were proposed to estimate 𝛿 using a working correlation structure
with nuisance parameters.2 This enables us to accommodate associations among measurements within the subject, yet
it requires estimation of additional nuisance parameters involved in the working correlation structure. Qu et al3 went a
step further and developed quadratic inference functions, which avoids estimation of additional parameters by approxi-
mating the working correlation structure with several basis matrices. Both approaches can yield consistent and efficient
estimators by accommodating the within-subject correlation commonly existing in longitudinal data.

Analysis with model (1), however, could indicate no difference in the outcome of 2 treatments, resulting in the recom-
mendation of either treatment for use in the population. At the same time, individuals can react very differently to the
same treatment. Outside factors, such as biological or environmental influences, can have a significant impact on the out-
come of a given treatment. As such, a method for identifying an ideal treatment based on patient characteristics is desired
rather than identifying a single beneficial treatment for the entire population.

Song and Pepe4 proposed a method for subgrouping patients into a particular treatment according to a covariate deter-
mined by how this value compared to a prespecified threshold. The use of a single covariate was also used by Bonetti and
Gelber,5 in which patients were grouped by the value of this covariate and analyzed with a moving average procedure.
Moskowitz and Pepe6 used the concept of positive predictive values with a single covariate. The problem with these meth-
ods, however, is that more than one variable may be related to the outcome of the treatment. Cai et al7 were able to use
multiple baseline measurements with a two-stage method, where a parametric index score was calculated based on the
estimated subject-specific mean response for the treatments. Zhao et al8 also used a parametric scoring system with mul-
tiple baseline covariates. Foster et al9 proposed the virtual twins method to identify a subgroup for which the treatment
effect was better that than the average treatment effect.

Recently, random effects linear models have been studied for personalized treatments, as the model allows each patient
to be considered an individual rather than only a member of the population.10,11 Diaz et al12 used a random intercept model
to model the log of plasma concentrations given certain covariates. Diaz13 proposed benefit functions for treatment com-
parison and provided a graphical method for investigating the severity of a disease. Here, the random effects incorporate
variability of the response differences in personal characteristics of the patient. Cho et al14 used a random forest approach
in an unspecified random effects model. Zhu and Qu15 personalized drug dosage over time with a log-linear mixed effect
model. Diaz et al10 also noted that an empirical Bayesian approach under the mixed model framework may have better
results for individualizing drug doses.

While the above mentioned procedures can subgroup the data, the effectiveness of their classification has not been
fully discussed. Shen and He16 developed a procedure using a structured logistic-normal mixture model that not only
classified the data but also tests for the existence of subgroups. This work was extended by Wu et al17 for time-to-event
data with the semiparametric logistic-cox mixture model. While these methods have advanced work in subgroup analysis,
specifications for the data may not always be met.

In this paper, we offer a complete process from subgrouping to validation for personalized treatments in longitudi-
nal studies. Our procedure starts by providing a random effects linear model. The random effects in the model evaluate
individual treatment effects over time, yet the fixed effects still allow us to look at the population as a whole. Since the
variation in the random effects acts as the variation between characteristics of the patients,10,13,18 we use various classifica-
tion approaches to build prediction models based on the individual effects and characteristics of the patients; both linear
and nonlinear classification approaches are considered, since the association between the characteristics of the patient
and the outcome are unknown in practice. While subgrouping can be performed based on the prediction models, the
question of its appropriateness and which model is best remains unanswered. Therefore, a validation procedure has been
developed to choose the best prediction model under the marginal regression framework.

While many methods have been developed for classifying data, the advantage of the proposed method is that it uses
supervised learning algorithms already developed, making them easier to implement and interpret. In addition, the pro-
posed procedure can be readily applied to a longitudinal medical study where all follow up appointments may not be
attended, therefore resulting in missing measurements. Moreover, the validation approach allows us to not only analyze
the treatment effect over time for those that received the treatment deemed beneficial with the prediction model but also
takes into account a time effect. This is an important aspect; while we may desire that the outcome decreases over time,
this may not happen. Including a time effect allows us to analyze whether or not the treatment slows the progression of
the illness. Since we are able to assess the validity of our classification and determine the best prediction model, our steps
outline the entire procedure for determining an appropriate subgroup.
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The paper is organized as follows. Section 2 outlines the proposed methodology, including the random effects model for
treatment effect over time, the prediction models for subgrouping, and the validation of the models. Results of the method-
ology on simulation studies are in Section 3. Section 4 analyzes data from the Women Entering Care study on depression
among low-income and minority women. The discussion in the final section presents some additional thoughts.

2 METHODOLOGY

2.1 Evaluating individual treatment effects
Since a random effects linear model has been shown to be effective in the analysis of longitudinal data, we consider the
model that evaluates the treatment effect, specifically its effect over time, on a response. Accordingly, the random slope
intercept model is formulated as

Yij = 𝛽0 + 𝛼0i + (𝛽1 + 𝛼1i)ZiTij + 𝛽2Tij + eij, i = 1, … ,n j = 1, … ,ni, (2)

where 𝛼0i and 𝛼1i are the random intercept and slope for subject i, respectively, and eij are random errors. While 𝛽1 rep-
resents the overall average of the treatment effect over time, 𝛼1i enables us to take into account individual differences.
By considering the interaction effect between the treatment and time, model (2) allows us to evaluate the individual
treatment effect on the response over time.

We estimate the parameters in model (2) using maximum likelihood estimation. Without loss of generality, we suppose
that the number of measurements taken on each subject are the same (ie, ni = k for all i) and rewrite model (2) as

Y = G𝛽 + D𝛼 + e, (3)

where Y and e are nk-dimensional vectors of the responses and errors, and G and D are nk×3 and nk×2n matrices of covari-
ates corresponding to the fixed effect 𝛽 = (𝛽0, 𝛽1, 𝛽2)

′ and random effect 𝛼 = (𝛼01, … , 𝛼0n, 𝛼11, … , 𝛼1n)′, respectively.
Assuming a multivariate normal distribution(
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model (3) can also be expressed as Y = G𝛽 + e*, where e* = D𝛼 + e, resulting in e* ∼ N(0,M) with M = DΩD′ + Σ.
Accordingly, the estimators for 𝛽 and 𝛼 are obtained as 𝛽 = (G′M̂−1G)−1G′M̂−1Y and �̂� = Ω̂D′M̂−1(Y − G𝛽), respectively.
Here, Ω̂ and Σ̂, and ultimately M̂, are obtained by maximizing the following log-likelihood function:

l(Ω,Σ) = −1
2
(Y − G(G′M−1G)−1G′M−1Y )′M−1(Y − G(G′M−1G)−1G′M−1Y )

− 1
2

log|M| − nk
2

log(2𝜋),

where |M| is the determinant of the covariance matrix M. While this is computationally intensive, advances with technol-
ogy and software make this a nonissue. These estimates are asymptotically consistent and efficient.19 When the estimate
of M is biased, the restricted maximum likelihood is a viable alternative approach.20

Since model (2) provides the individual treatment effect on the response over time, we can split all subjects into 2 groups
according to whether or not they had a positive effect. For this, an indicator of Ci is assigned to each subject based on the
sum of the fixed slope estimate and random slope estimate for the interaction between treatment and time, where Ci = 1
if 𝛽1 + �̂�1i > 0 and −1 otherwise.

2.2 Building prediction models
After model (2) is fitted to longitudinal data, we build prediction models to subgroup the data by treating the binary
outcome of Ci as the response variable. The corresponding independent variables, denoted by Xi, contains characteristics
of patient i that are deemed influential to the assignment of the treatment. This could include variables such as, but not
limited to, age, gender, and race. The use of Ci as the response is key, as it is determined by the parameter estimate for the
interaction between treatment and time for each patient and is not an observed value from the data.

Since we classify observations into one of 2 subgroups, the desired prediction model is specified as f(Xi) = P(Ci = 1|Xi),
where f(·) is a function representing the association between Ci and Xi. In reality this relationship is unknown. It could
be either linear or nonlinear, however this lack of information makes the function f(·) unidentifiable. As such, various
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prediction models are constructed through both types of supervised learning algorithms; linear (logistic regression, linear
discriminant analysis (LDA), and support vector machine (SVM) with a linear kernel) and nonlinear (quadratic discrim-
inant analysis (QDA), decision tree, random forest, and SVM with a radial kernel). We denote the estimated prediction
model by f̂ (Xi) and classify patient i as Ĉi = 1 if f̂ (Xi) > 0.5 and −1 otherwise.

Among these supervised learning algorithms, we expect logistic regression, LDA, and SVM with a linear kernel to
provide an accurate prediction model if the predictors are linearly associated with the response. Likewise, we expect
these methods to perform poorly and QDA, decision tree, random forest, and SVM with a radial kernel to perform well if
the relationship between Ci and Xi is not linear. After we use the supervised learning algorithms to build the prediction
models, we assess these results with the validation approach outlined below.

2.3 Validating prediction models
While classification can be performed on our data, the question still remains of whether the subgrouping was effective or
not. Therefore, a validation approach has been developed to tackle this problem. Suppose that a higher response is desired
over time. Then treatment Z = 1 is deemed more beneficial than treatment Z = −1 for patient i if Ĉi = 1, as 𝛽1 + �̂�1i is
the parameter estimate for the interaction term of ZiTij in model (2) and Ci = 1 means this estimate is positive. Likewise,
treatment Z = −1 is deemed more beneficial for patient i if Ĉi = −1.

In this section, we assume that the desired outcome is for the response to decrease over time, which corresponds to our
application of the depression study (ie, treatments Z = 1 and −1 are deemed more beneficial for patients whose Ĉi are −1
and 1, respectively). For each subgrouping method described in Section 2.2, let Ui be the indicator that the patient received
the treatment deemed to be more beneficial through the prediction model: Ui = 1 if the patient received the treatment
predicted to be more beneficial and Ui = −1 otherwise. We then formulate the following marginal regression model:

Yij = 𝛾0 + 𝛾1UiTij + 𝛾2Tij + 𝜀ij (4)

and estimate parameters 𝛾k, k = 0, 1, 2, using the generalized estimating equation approach2 that can yield unbiased and
more efficient estimators than the one ignoring the within-subject correlation. We remark that while this may appear to
be similar to model (1), the key difference is the use of Ui rather than Zi. We are no longer concerned with which treatment
the patient received, as we were in model (1), but rather with whether or not the subject received the treatment that was
deemed beneficial.

For patients who receive the more beneficial treatment, we should notice a larger decrease in their response over time,
thus �̂�1 should be significantly negative. Here we let the proposed subgrouping analysis be appropriate and beneficial if
H0 ∶ 𝛾1 = 0 is rejected against Ha ∶ 𝛾1 < 0 using the Wald test. It may be the case that multiple subgrouping approaches
prove to be beneficial but one must be chosen. The best subgrouping approach is the one that distinguishes the two groups
(did and did not receive the treatment predicted to be beneficial) the most. This is determined by the one with the largest
Wald test statistic among effective prediction models.

3 SIMULATION STUDIES

In this section, we assess the proposed method through 3 different types of simulation studies. First, we assume that
subgrouping is appropriate and use both a linear and nonlinear form of the random slopes. Finally, we assume that
subgrouping is not appropriate and generate random slopes that are not dependent on the data. For these, a sample size
of 200 for the training dataset and 100 for the testing dataset were modeled as

Yij = 𝛽0 + 𝛼0i + (𝛽1 + 𝛼1i)ZiTij + 𝛽2Tij + eij, j = 1, … , 6, (5)

where (𝛽0, 𝛽1, 𝛽2)
′ = (0, 0,−0.2)′ , Zi was randomly chosen as either−1 or 1 for the treatment assignment with a probability

of .5, Tij was the index of time j, 𝛼0i was randomly generated from a uniform distribution between −1 and 1, and ei =
(ei1, … , ei6)′ was randomly selected from a multivariate normal distribution with mean 0 and variance-covariance matrix
R, where all elements on the diagonal of R are 1 and 0.7 otherwise, which corresponds to a compound symmetry structure
with a correlation coefficient of 0.7. Six independent variables were used, which act as characteristics of the patient; X1i,
X2i, and X3i were generated randomly from a standard normal distribution, while X4i, X5i, and X6i were binary variables
assigned a value randomly chosen as either −1 or 1 for subject i with a probability of .5.
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The training dataset was used to fit model (5) and the 7 supervised learning algorithms described in Section 2.2 were
used based on the predictor vector Xi = (X1i,X2i,X3i,X4i,X5i,X6i)

′ . Once 7 prediction models were developed on the
training dataset, subjects in the testing dataset were classified based on these models; misclassification error rates were
computed, defined as the proportion of times Ci ≠ Ĉi for i = 1, … , 100. Finally, the proposed validation approach was
used to determine the appropriateness of our subgrouping and the best subgrouping method. A total of 1000 simulations
were run for each type of random slope.

3.1 Linear association
We model our random slopes as

𝛼1i = −0.5X1i + X4i + 𝜁i,

where 𝜁 i is the error term randomly generated from a standard normal distribution. The average of the misclassification
error rates reported in Table 1 show that all methods except the decision tree perform similarly with the linear approaches
producing slightly lower error rates.

In addition, the validity of our classification was assessed on the testing dataset. Table 1 also displays the proportion
of times each method produced a significantly negative �̂�1 at a nominal level of 0.05, as well as the average and standard
deviation of �̂�1 among the 1000 simulations. Since we were assuming that a lower response is desired over time, �̂�1 is sig-
nificantly negative if the proposed prediction model is effective. This was achieved, as shown in Table 1; each subgrouping
approach produced a significant parameter estimate all 1000 times, indicating that the proposed method performs well
in the case of linear random slopes. Moreover, the average and standard deviation of �̂�1 were approximately the same for
all methods except the decision tree, suggesting that both linear and nonlinear classification approaches performed rela-
tively equally. Due to ease of interpretation and simplicity, however, we would recommend the use of a linear classification
approach here.

We note that we intentionally set X4i to be a strong variable and X1i to be weaker to find if logistic regression and the
random forest algorithm would detect these variables as significant. For logistic regression, variables were considered
significant if their corresponding P value was less than .05. X4i was always shown to be a significant variable in the model
while X1i was significant 99.3% of the time. Moreover, the remaining 4 variables were significant 5% to 6% of the time. In
addition, we were able to identify important factors when the random forest algorithm was implemented; X4i was always
considered the most important factor and X1i was the second most important variable over 91% of the time.

3.2 Nonlinear association
We used the same information as above, while adding 2 nonlinear components to the random slopes in Section 3.1. The
nonlinear random slopes were then generated as

𝛼1i = −0.5X1i + X4i + X1iX2i − 0.7X2
3iX4i + 𝜁i.

The results in Table 2 confirm that all nonlinear approaches outperformed the linear ones in terms of a lower misclas-
sification error rate; SVM with a radial kernel had the lowest error rate with the random forest algorithm less than 1%
behind. We also remark that X5i and X6i were never considered among the top 3 most influential variables among all 1000

TABLE 1 Misclassification error rates and validation results on testing data for
linear random slopes

Type Method Error Rate Proportion Mean (�̂�1) SD (�̂�1)

Linear Logistic 19.17% 1.000 −1.976 0.233
LDA 18.87% 1.000 −1.994 0.227
SVM (linear) 19.05% 1.000 −1.989 0.228

Nonlinear QDA 19.45% 1.000 −1.970 0.234
Decision tree 24.45% 1.000 −1.670 0.301
Random forest 20.57% 1.000 −1.899 0.240
SVM (radial) 19.12% 1.000 −1.982 0.229

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM,
support vector machine
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TABLE 2 Misclassification error rates and validation results on testing data for
nonlinear random slopes

Type Method Error Rate Proportion Mean (�̂�1) SD (�̂�1)

Linear Logistic 39.06% 0.718 −0.815 0.383
LDA 39.02% 0.718 −0.814 0.385
SVM (linear) 39.27% 0.666 −0.737 0.400

Nonlinear QDA 33.24% 0.913 −1.088 0.369
Decision tree 34.73% 0.952 −1.280 0.418
Random forest 30.39% 0.997 −1.587 0.360
SVM (radial) 29.63% 0.999 −1.615 0.350

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM,
support vector machine

TABLE 3 Misclassification error rates and validation results on testing data for
randomly generated random slopes

Type Method Error Rate Proportion Mean (�̂�1) SD (�̂�1)

Linear Logistic 50.10% 0.057 −0.002 0.200
LDA 50.10% 0.057 −0.002 0.200
SVM (linear) 50.10% 0.053 0.002 0.209

Nonlinear QDA 50.10% 0.054 −0.001 0.200
Decision tree 49.90% 0.064 −0.002 0.202
Random forest 50.10% 0.048 0.008 0.200
SVM (radial) 50.20% 0.060 0.004 0.208

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM,
support vector machine

simulations with the random forest approach. Considering these 2 variables were the only ones not used in the calculation
of the above random slopes, this result was not surprising.

Table 2 also shows that the prediction models based on the nonlinear classification approaches were better than those
of the linear type in terms of a higher proportion of times that �̂�1 was significant; this estimate also has a smaller value,
indicating that the predicted beneficial treatment lowers the response more over time. When comparing the nonlinear
algorithms, SVM with a radial kernel and random forest were the best classification methods studied. For these meth-
ods, the average �̂�1 was −1.615 and −1.587, respectively. On the other hand, the linear approaches all had the highest
error rates and accordingly had the fewest significant parameter estimates with the validation approach. In fact, the pro-
portion of significant parameter estimates decreased by about 30% with the linear approaches from when we had linear
random slopes in Section 3.1. In addition, the average �̂�1 for these methods ranged from −0.737 to −0.815, indicating the
subgrouping is beneficial but not as beneficial as that of the nonlinear methods.

3.3 No association
In the 2 previous simulation studies, the random slopes were modeled based on a subset of the independent variables.
We now investigate when the random slopes are not dependent on the data at all. This represents the null hypothesis of
subgrouping not being appropriate. Accordingly, we generated 𝛼1i randomly from a standard normal distribution.

Table 3 displays the results from the validation approach. Regardless of the classification approach, the proportion of
times that the prediction model is deemed significant through validation is close to a nominal level of 0.05. This proportion
also represents the type I error, where we recommend subgrouping when it is not appropriate. These results indicate that
when subgrouping is not appropriate, all the classification methods do not recommend any subgrouping. The averages of
the misclassification error rates are also reported in Table 3. These are all near 50%, indicating that we are just as likely
to correctly classify an individual as we are to misclassify them. This is because the random slopes are not associated
with the data at all, yet the prediction models are built with the independent variables of Xi. As such, the classification
approaches cannot perform well.
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4 DATA ANALYSIS FOR DEPRESSION STUDY

In this section, the proposed subgrouping method was applied to the Women Entering Care study on depression that
involved low-income and minority women. Information on this data can be found in Miranda et al.1 Here, we present a
brief summary. The response was the Hamilton Depression Scores, assessed every month for the first 6 months, including
a baseline observation, then every other month for the remainder of the year. Each patient was randomly assigned to
1 of 3 treatment groups: medication (n = 88), cognitive behavioral therapy (n = 90), and referral to community care
(treatment as usual) (n = 89). Since the goal is to analyze the treatment effect over time, we only considered patients who
had a baseline depression score and at least one follow-up. While all patients had an initial score, 11 did not have any
other depression scores and were therefore excluded from our analysis (medication n = 86, cognitive behavioral therapy
n = 85, referral to community care n = 85).

Table 4 gives us an initial look at the data at various time points. Once the assigned treatment had been implemented,
we noticed better (lower) scores among those in the medication and cognitive behavioral therapy groups. Miranda et al1

also found these 2 treatments to be more effective at treating depression than being referred to community care when
evaluating the data from just the first 6 months.

To assess our procedure, we split the data into 2 smaller datasets with two-thirds of the data in the training dataset and a
third in the testing. Our proposed method had similar findings as that of Miranda et al,1 yet we used all observations rather
than just the first 6 months. When using the training dataset to compare medication and cognitive behavioral therapy to
the referral group, our random effects linear model estimated that the parameters for the interactions between treatment
and time were 𝛽1 = −0.1383 and −0.1344 (t-value = −2.60, df = 95, P value = .009, and t-value = −2.46, df = 93.5, P value
= .013), respectively. Therefore, our method was also able to show that medication and cognitive behavioral therapy are
better at treating depression than being referred to community care.

Our attention shifted to comparing the medication and cognitive behavioral therapy groups. We start by fitting mean
regression model (1) to the training dataset and using the generalized estimating equations with an AR(1) correlation
structure, as this is an established method. With this, the parameter estimate for the interaction between treatment and
time for the training dataset was 𝛿1 = 0.0238 (Wald = 0.19, P value = .660), meaning we could not determine a differ-
ence in outcomes of the treatment and would recommend either to a patient. Using proposed random effects model (2)
resulted in an estimate of 𝛽1 = −0.0017 (t-value = −0.0168, df = 94.6, P value = .980), leading to the inability to con-
clude a significant difference in average outcomes between treatments. Therefore, analysis with the random effects of
model (2) was performed, taking into account individual treatment effects over time. When building the prediction mod-
els, 8 independent variables were used for each patient: 6 binary variables (marital status, schooling, housing, ethnicity,
where the patient was born, and whether or not the patient works) and 2 continuous variables (baseline depression score

TABLE 4 Means and confidence intervals for depression scores

Medication Cognitive Behavioral Therapy Control
Time Mean (95% CI) Mean (95% CI) Mean (95% CI)

Baseline 18.08 (16.99-19.17) 16.35 (15.21-17.49) 16.54 (15.42-17.66)
Month 3 9.60 (8.02-11.19) 10.24 (8.56-11.92) 13.05 (11.22-14.88)
Month 6 9.17 (7.41-10.94) 10.73 (8.95-12.52) 11.92 (10.14-13.70)
Month 12 9.71 (7.70-11.72) 8.38 (6.72-10.05) 10.22 (8.70-11.75)

TABLE 5 Validation results on testing dataset for depression data

Type Method �̂�1 SE Wald P value

Linear Logistic −0.029 0.203 0.02 .444
LDA −0.029 0.203 0.02 .444
SVM (linear) −0.046 0.205 0.05 .411

Nonlinear QDA −0.187 0.199 0.89 .173
Decision tree −0.243 0.192 1.61 .103
Random forest −0.583 0.183 10.10 .001
SVM (radial) −0.182 0.199 0.84 .180

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic discriminant
analysis; SVM, support vector machine



ANDREWS AND CHO 105

and age). Table 5 displays the results when using model (4) to check the validity of our approach on the testing dataset with
prediction models built on the training dataset. All parameter estimates for the interaction between treatment and time
were negative, indicating that the depression score decreases over time for those individuals that received the treatment
deemed to be beneficial. Not all methods, however, produced significant results; the only method that found subgrouping
to be appropriate and beneficial was the random forest algorithm.

None of the linear classification approaches were considered significant. In fact, logistic regression did not detect any
of the predictors as significant. Siddique et al21 found similar results in their study with growth mixture modeling. Of
the nonlinear subgrouping approaches, the random forest algorithm produced the best results. This algorithm detected
that whether or not the patient worked and where they were born were the 2 most important variables in classifying
the data.

5 DISCUSSION

Unlike most of the existing methods referred to in Section 1, our proposed procedure offers a complete process for sub-
grouping and validation; it uses a random effects linear model to assess the treatment effects over time for each subject,
builds prediction models based on classification algorithms, and determines whether or not the subgroups are appropri-
ate and beneficial. This whole process can be easily implemented using existing packages in statistical software such as
R and SAS. To secure good performance for subgroup identification, repeated measures within the subject are required
to separate variance components and identify individual treatment effects successfully.22

With the numerical studies, all classification methods performed about the same with the linear random slopes; how-
ever, for the nonlinear random slopes, the linear classification approaches performed poorly. This could lead to the
recommendation of always using nonlinear classification approaches as the preferred method for subgrouping. While the
results with such a nonlinear approach would still be good, the interpretation would not be as easy. As such, it is rec-
ommended that various classification approaches are considered to find the best subgrouping strategy. Real data analysis
also confirms the importance of performing multiple subgrouping approaches and comparing the results. Our analysis
showed that the nonlinear approaches were best but also showed that not all these nonlinear approaches perform well.
In fact, only the random forest algorithm produced significant results here. Moreover, the simulation results indicate that
our validation approach is not only simple but also powerful. The validation approach produced significant results more
often when the proper type of classification approach was used, while also having a type I error close to a nominal level
under the null hypothesis.
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