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Summary. This article describes a polynomial growth curve quantile regression model that provides a comprehensive assess-
ment about the treatment effects on the changes of the distribution of outcomes over time. The proposed model has the
flexibility, as it allows the degree of a polynomial to vary across quantiles. A high degree polynomial model fits the data
adequately, yet it is not desirable due to the complexity of the model. We propose the model selection criterion based on an
empirical loglikelihood that consistently identifies the optimal degree of a polynomial at each quantile. After the parsimonious
model is fitted to the data, the hypothesis test is further developed to evaluate the treatment effects by comparing the growth
curves. It is shown that the proposed empirical loglikelihood ratio test statistic follows a chi-square distribution asymptoti-
cally under the null hypothesis. Various simulation studies confirm that the proposed test successfully detects the difference
between the curves across quantiles. When the empirical loglikelihood is employed, we incorporate the within-subject correla-
tion commonly existing in longitudinal data and gain estimation efficiency of the quantile regression parameters in the growth
curve model. The proposed process is illustrated through the analysis of randomized controlled longitudinal depression data.
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1. Introduction

In longitudinal studies where subjects are repeatedly mea-
sured, it is of particular interest to analyze the growth of
observations over time. For example, in a randomized con-
trolled trial study conducted in Washington, D.C. from March
1997 through May 2002, women suffering from depression
were randomly assigned to one of three treatments: an antide-
pressant medication, psychotherapy, or referral to community
mental health services. The Hamilton depression rating scale
was recorded monthly to evaluate effects of the different treat-
ments on depression longitudinally. Although a growth curve
mean regression model can provide the dynamic changes of
depression scores over time (Potthoff and Roy, 1964), it could
be problematic due to the following reasons. First, the distri-
bution of depression scores at the initial visit is right-skewed
as shown in Figure 1. Second, the treatment effects on the
changes of the distribution of depression scores over time may
vary across quantiles.

Growth curve quantile analysis is a viable alternative that
provides a unique opportunity in exploring various trajecto-
ries of observations across levels of depression from mild to
severe over time. Suppose that a polynomial growth curve
with a sufficiently high degree is guaranteed to provide an
arbitrarily good fit to the longitudinal data. We propose to
model the τth growth curve quantiles of ni responses from
subject i, Yi = (Yi1, . . . , Yini

)T , repeatedly measured at times
ti = (ti1, . . . , tini

)T as

Qτ(Yi|Tτi,Hi) = TτiBτHi, i = 1, . . . , n, (1)

where τ ∈ (0, 1), n is the number of subjects, and
Bτ = (Bτ1, . . . ,Bτq) is a pτ × q-dimensional matrix of

parameters. Note that the ni × pτ-dimensional matrix Ti =
(1, ti, . . . , t

pτ−1
i ) specifies a polynomial curve with a degree of

pτ − 1 and the q-dimensional treatment vector Hi models dif-
ferences between q treatment groups. In the aforementioned
depression study, for instance, three treatment effects can be
evaluated by comparing columns, Bτ1,Bτ2, and Bτ3, in the
parameter matrix of Bτ . If diverse effects of the kth treat-
ment on the response at different levels of τ are of interest,
we can assess Bτk across quantiles. Therefore, we address sta-
tistical inference about the quantile regression parameters in
model (1).

When polynomial growth curves are modeled, the selec-
tion of a proper degree of a polynomial plays an important
role in achieving the most parsimonious growth curve model.
We propose the Bayesian information criterion based on an
empirical loglikelihood (Qin and Lawless, 1994; Owen, 2001)
for the quantile regression model selection. This allows us to
choose a different degree of a polynomial across quantiles.
In theory, we show that the proposed criterion consistently
identifies the optimal degree of a polynomial at a given level
of τ. After the parsimonious growth curve model is selected
at the τth quantile of interest, one often evaluates the treat-
ment effects by comparing the growth curves. we construct the
hypothesis test to check if the pattern of the τth growth curve
quantile differs reliably between groups. Typical loglikelihood
ratio tests confront challenges for this hypothesis test because
specification of a parametric likelihood function is unattain-
able in quantile regression models. In this article, we develop
a simple and powerful test statistic based on an empirical
loglikelihood ratio that is similar to the parametric loglike-
lihood ratio. This test statistic is easy to implement, since
it does not require specification of the parametric likelihood
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Figure 1. Histograms of depression scores at baseline for medication, psychotherapy, and referral group.

function, nor does it estimate a covariance matrix of esti-
mates of the quantile regression parameters. We show that
the proposed test statistic asymptotically follows a chi-square
distribution under the null hypothesis. In addition, simula-
tion studies demonstrate that the proposed test detects the
difference between the growth curves successfully in all cases
under consideration.

In longitudinal studies, measurements within the same sub-
ject are more likely to be correlated, and therefore estimation
efficiency can be achieved by accounting for the within-subject
correlation. This brings the challenge of incorporating the cor-
relation information, as estimating the working correlation
structure can be unreliable in quantile regression model (1)
when either low or high quantile is of interest, or the number
of measurements is relatively large. To attenuate this diffi-
culty, we employ an empirical likelihood for longitudinal data
(Cho, Hong, and Kim, 2016) by transforming model (1) to
a standard quantile regression model. This method does not
estimate the nuisance parameters associated with the work-
ing correlation structure, but approximates its inverse with
several known basis matrices (Qu, Lindsay, and Li, 2000).
Both theoretical and simulation results ensure that this esti-
mation approach yields a more efficient estimator than the one
assuming an independent correlation structure (Koenker and
Bassett, 1978). Tang and Leng (2011) also used the empiri-
cal likelihood to improve estimation efficiency. However, their
estimation approach is not applicable for the aforementioned
model selection and hypothesis test, because the empirical
likelihood is constructed under the mean regression frame-
work, and there is appropriate for statistical inference about
mean regression parameters, not quantile regression parame-
ters of our interest.

The remainder of this article proceeds as follows: Section 2
provides efficient estimation for the regression quantiles in
model (1), inference about testing for equality of growth
curves, and selection of the most parsimonious growth curve
model. In Section 3.1, we evaluate the finite sample perfor-
mance of the proposed procedure through simulation studies.
The proposed procedure is also applied to the aforementioned
depression data in Section 3.2. In the analysis of the depres-
sion study, the proposed growth curve quantile model provides
a more complete assessment about the treatment effects on
the distribution of depression scores. A discussion is placed in
Sections 4.

2. Methodology

2.1. Estimation of Quantile Regression Parameters

In this section, we consider efficient estimation of the quantile
regression parameter Bτ in model (1). By letting Xi = HT

i ⊗
Tτi and β = (BT

τ1, . . . ,B
T
τq)

T , model (1) can be transformed
to Qτ(Yi|Xi) = Xiβ, where ⊗ is a left Kronecker product.
To account for the within-subject correlation, we extend the
generalized estimating equations (Liang and Zeger, 1986) and
assess β at a given level of τ by solving

n∑
i=1

XT
i A

−1/2
i Ri(α)−1A

−1/2
i ϕτ(Yi − Xiβ) = 0, (2)

where Ai and Ri(α) are a diagonal variance matrix and a
working correlation matrix of ϕτ(Yi − Xiβτ) with a few nui-
sance parameters α, βτ is the true value of β at the τth
quantile level, and ϕτ(u) is a first derivative of a check func-
tion ρτ(u) = u{τ − 1(u < 0)} having an indicator function 1(·).
This procedure enables us to improve estimation efficiency
by incorporating the correlation among measurements within
the subject, yet it requires estimation of α in the working
correlation matrix. When the misspecified working correla-
tion structure is considered, it may cause a loss of estimation
efficiency. More importantly, this approach may not be gener-
ally applicable if low or high quantiles are of interest because
estimation of α can be unreliable. Even if β is estimated by
solving equation (2), this estimator may satisfy the equations
approximately due to the discontinuity of ϕτ(Yi − Xiβ).

Alternatively, Qu, Lindsay, and Li (2000) modeled the
inverse of the working correlation matrix in (2) as Ri(α)−1 =∑b

j=1
djDij, where Di1 is the identity matrix, Di2, . . . ,Dib

are symmetric matrices that contain either 0 or 1 as com-
ponents, and d1, . . . , db are unknown constants. In practice,
the set of basis matrices can be readily determined by the
type of working correlation structures. For example, when the
measurement times are spaced evenly and the measurements
are less likely to be correlated if they are further away in
time, as in our real data, the AR(1) is generally considered as
the working correlation structure. As a result, the inverse of
the working correlation structure is approximated by a linear
combination of three basis matrices, Di1, Di2, and Di3, where
Di2 is a symmetric matrix with 1 on the sub-diagonal and 0
elsewhere and Di3 is a symmetric matrix with 1 in elements
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(1, 1) and (ni, ni) and 0 elsewhere. If the correlations among
all measurements within each subject are likely to be equal,
then Ri(α) corresponds to a compound symmetry structure
and only two basis matrices are needed to represent Ri(α)−1

as Ri(α)−1 = d1Di1 + d2Di2, where Di2 is a symmetric matrix
with 0 on the diagonal and 1 elsewhere, and d1 and d2 are
unknown coefficients. If the prior information for correlation
structure is not known, one can use a linear representation
of a complete set of basis matrices with 1 for (i, j) and (j, i)
entries and 0 elsewhere. Further details about the choice of
the basis matrices can be found in Qu, Lindsay, and Li (2000)
and Zhou and Qu (2012).

With the basis matrices Di1, . . . ,Dib and var{ϕτ(Yij −
Xijβτ)} = τ(1 − τ) for all j, equation (2) can be extended as∑n

i=1
gi(β) = 0 having

gi(β) =

⎛⎜⎜⎝
XT

i Di1ϕτ(Yi − Xiβ)

...

XT
i Dibϕτ(Yi − Xiβ)

⎞⎟⎟⎠ .

Following E{gi(βτ)} = 0, we construct an empirical loglikeli-
hood for estimation of growth curve quantile coefficients as

lτ(β)= sup

{
n∑

i=1

log(pi)

∣∣∣∣ n∑
i=1

pigi(β) = 0,

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1

}
,

(3)

where pi denotes a point mass assigned to subject i. The
empirical loglikelihood estimator of β is obtained by maxi-

mizing (3) as β̂ = arg maxβ lτ(β). In practice, the proposed
approach is easy to be implemented by existing R packages.
With an initial value of β, the empirical loglikelihood (3) is
computed by the R package emplik. The estimator is then
implemented in the R package optim by maximizing the objec-
tive function of lτ(β). Note that lτ(β) is not a convex function
so it might cause the potential problem of multiple roots.
Therefore, the choice of the initial value of β plays an impor-
tant role in achieving a consistent and efficient estimator. In
the article, the R package rq is used to obtain the initial value,
since this estimate is asymptotically consistent (Koenker and
Bassett, 1978). Various simulation studies confirm that our
resultant estimator is unbiased and more efficient than that
obtained from Koenker and Bassett’s method. We have pro-
vided R code used for Section 3.2 as Supplementary Materials.

Remark that the proposed approach takes into account
the within-subject correlation without estimating additional
nuisance parameters associated with the working correlation
structure. Even when the assumed working correlation struc-
ture is specified incorrectly, the resultant estimator is still con-
sistent. For statistical inference on quantile regression param-
eters, the empirical loglikelihood ratio is also formulated as

Wτ(β) = −2

n∑
i=1

log(npi) = 2

n∑
i=1

log
{
1 + λTgi(β)

}
, (4)

where λ satisfies n−1
∑n

i=1
gi(β)/{1 + λTgi(β)} = 0. This

function plays an inferential role since it possesses the

same chi-square asymptotic properties as in the parametric
likelihood ratio test.

To study asymptotic properties of β̂, we denote the
τth quantile of the conditional distribution of Yij given
Xij by qij(τ) and the conditional density at qij(τ) given
Xij by fij{qij(τ)}, respectively. We also define �i =
diag

[
fi1{qi1(τ)}/(

√
τ
√

1 − τ), . . . , fini
{qini

(τ)}/(√τ
√

1 − τ)
]
, �

=E{gi(βτ)gi(βτ)
T}, and�T =E(−XT

i Di1�iXi, . . . ,−XT
i Dib�iXi).

Theorem 1. Under the regularity conditions in the
Supplementary Materials, the distribution of

√
n(β̂ − βτ)

converges to N
{
0, (�T �−1�)−1

}
in distribution as n →

∞. Moreover, 	I − 	 is positive semidefinite, where 	 =
(�T �−1�)−1 and 	I is the asymptotic covariance matrix of

β̂ assuming an independent working correlation matrix.

Theorem 1 confirms that the proposed estimator follows an
asymptotic normal distribution regardless of the choice of
working correlation structures. However, the positive semidef-
inite of 	I − 	 ensures that estimation efficiency is improved
when the within-subject correlation is accommodated. This
efficiency gain can be achieved even though the working cor-
relation structure is not specified correctly.

2.2. Hypothesis Test for Equality of Growth Curves

After we fit model (1) to the longitudinal data, one often asks
whether or not the growth curves are identical at a level of
τ. For ease of presentation, we suppose that it is of particular
interest to test the equality of the first d growth curves. Then,
we construct the hypothesis test to check if these growth
curves are the same at a given level of τ by stating the null
hypothesis as

H0 : Bτ1 = Bτ2 = . . . = Bτd . (5)

As a special case, equality of all curves can be assessed by
letting d = q. Since Wτ(β) in equation (4) plays similarly to
the parametric loglikelihood ratio, we develop the test statis-
tic based on Wτ(β) for testing the null hypothesis against the
alternative that is the negation of H0 as

ELTτ = Wτ(β̃) − Wτ(β̂), (6)

where β̃ is the maximizer of lτ(β) under the null hypothe-

sis. Note that Wτ(β̃) and Wτ(β̂) measure how well growth
curve model (1) fits the data under the null and alterna-
tive hypotheses, respectively. The proposed test statistic is
very beneficial, especially for quantile regression, since it does
not require specification of parametric likelihood functions,
nor does it estimate a covariance matrix associated with the
quantile regression parameter.

Theorem 2. If the regularity conditions in the Supple-
mentary Materials hold, then with a given level of τ, the
distribution of ELTτ converges to χ2

pτ(d−1) in distribution as
n → ∞ under H0.

Theorem 2 confirms that the test statistic asymptotically
follows a chi-square distribution with pτ(d − 1) degrees of
freedom when the null hypothesis is true. Thus, this pro-
posed hypothesis test is easy to implement with the critical
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value provided by the limiting distribution as χ2
1−a,pτ(d−1)

at a significance level of a, where χ2
1−a,pτ(d−1) is the 1 − a

quantile of χ2
pτ(d−1). In addition, the proposed test can be

readily extended to find significant polynomials by setting
coefficients of interesting polynomials as zero for the null
hypothesis.

2.3. Selection of the Most Parsimonious Model

The choice of an optimal degree of a polynomial, denoted
by pτ − 1, is essential for selecting the most suitable growth
curve model at the τth quantile level in that pτ can vary with
respect to τ. In general, there may exist more than one correct
model, since the most parsimonious model is usually nested
within other growth curve models with a higher degree than
pτ − 1. Although a cross validation and generalized cross vali-
dation can be commonly used for selecting a proper degree of
a polynomial, these methods tend to overfit the model (Wang,
Li, and Tsai, 2007). More importantly, these approaches may
not be generally applicable for the quantile regression model
directly.

Alternatively, the Bayesian information criterion based
approach enables us to identify the most parsimonious cor-
rect model consistently. Suppose that the first m polynomial
growth curves are candidate models holding pτ ≤ m and index
each candidate model by p, that is, p = 1, . . . , m. Given an
arbitrary value of p, we denote B̂(p) = (

B̂1(p), . . . , B̂q(p)
) =(

B̂T ,OT
)T

, where B̂ is an p × q-dimensional estimator
matrix of B in model (1) obtained by maximizing (3),
and O is an (m − p) × q-dimensional matrix of zeros. With

β̂(p) = (
B̂1(p)T , . . . , B̂q(p)T

)T
, we propose the Bayesian

information criterion based on the empirical loglikelihood
ratio as

ELBIC(p) = Wτ{β̂(p)} + dfplog(n), (7)

where dfp is the number of non-zero coefficients in β̂(p). The
optimal degree of a polynomial is then obtained by minimizing
(7) as p̂ = arg minp ELBIC(p).

Theorem 3. Under the regularity conditions in the
Supplementary Materials, with probability tending to 1,
P (ELBIC(p) > ELBIC(pτ)) → 1 for all p �= p̂.

Theorem 3 ensures that the proposed criterion selects the
most parsimonious growth curve model consistently. We also
remark that the growth curve quantiles at the τth quantile
level are constant over time when p̂ = 1.

3. Numerical Studies

In this section, we evaluate the finite sample performance
of the proposed procedure through simulation studies and a
motivating example discussed in Section 1.

3.1. Simulation Studies

To reflect the real data example provided in Section 3.2, three
growth curves are considered as follows. Each group consists of
100 subjects and every subject is repeatedly measured seven
times at t = 0, 1, . . . , 6. Accordingly, the correlated response

Table 1
Standard errors of estimators obtained from the method by Koenker and Bassett (1978), Tang and Leng (2011), and the

proposed approach

ρ = 0.3 ρ = 0.5 ρ = 0.8

Proposed K & B T & L Proposed K & B T & L Proposed K & B T & L

τ = 0.25
β1 0.071 0.076 0.072 0.070 0.080 0.072 0.070 0.084 0.075
β2 0.039 0.042 0.039 0.041 0.044 0.042 0.048 0.050 0.045
β3 0.070 0.076 0.069 0.069 0.078 0.071 0.070 0.088 0.076
β4 0.040 0.041 0.041 0.042 0.044 0.042 0.045 0.048 0.045
β5 0.066 0.073 0.068 0.066 0.076 0.067 0.070 0.086 0.075
β6 0.040 0.042 0.040 0.040 0.043 0.041 0.049 0.048 0.049

τ = 0.50
β1 0.064 0.069 0.063 0.065 0.075 0.066 0.066 0.079 0.065
β2 0.038 0.039 0.038 0.040 0.042 0.040 0.043 0.045 0.041
β3 0.062 0.067 0.063 0.065 0.074 0.066 0.069 0.082 0.069
β4 0.036 0.038 0.037 0.039 0.040 0.038 0.040 0.041 0.038
β5 0.064 0.068 0.065 0.062 0.073 0.062 0.065 0.076 0.067
β6 0.036 0.036 0.035 0.041 0.042 0.040 0.042 0.042 0.043

τ = 0.75
β1 0.070 0.073 0.071 0.072 0.081 0.073 0.071 0.083 0.073
β2 0.039 0.041 0.040 0.042 0.044 0.042 0.045 0.045 0.043
β3 0.066 0.070 0.065 0.071 0.080 0.072 0.073 0.087 0.077
β4 0.040 0.042 0.040 0.041 0.044 0.042 0.043 0.045 0.042
β5 0.067 0.073 0.067 0.071 0.080 0.070 0.070 0.080 0.070
β6 0.038 0.040 0.038 0.043 0.046 0.044 0.046 0.048 0.047
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variables are modeled as

Y =
(

1 1 . . . 1

0 1 . . . 6

)T (
β1 β3 β5

β2 β4 β6

)⎛⎜⎝1100 0 0

0 1100 0

0 0 1100

⎞⎟⎠
T

+ ε = TBH + ε, (8)

where β = (β1, β2, . . . , β6)
T = (20, −3, 20, −2, 20, −1)T , 1100

is an 100-dimensional one vector, and ε = (ε1, . . . , ε300) is
a 7 × 300-dimensional matrix of random errors with εi =
(εi1, . . . , εi7)

T . We generate the heteroscedastic errors as εij =(
1
2

+ j−1
3

)
ηij for i = 1, . . . , 300, where ηi = (ηi1, . . . , ηi7)

T ∼
N(0, 	), 	 is an AR(1) structure with a correlation coefficient
of ρ = 0.3, 0.5, and 0.8, respectively. This leads us to have
different true values of the regression quantile Bτ at τ = 0.25,
0.5, and 0.75 as

B0.25 =
(

19.66 19.66 19.66

−3.22 −2.22 −1.22

)
, B0.5 = B,

B0.75 =
(

20.34 20.34 20.34

−2.78 −1.78 −0.78

)
.

These regression quantiles are assessed using the proposed
approach under an AR(1) correlation structure and also com-
pared with the one under an independent correlation structure
(Koenker and Bassett, 1978).

Based on 500 simulation runs, we evaluate the bias and
the standard error of estimators for τ = 0.25, 0.5, and 0.75.
Table 1 reports the estimated standard error of each esti-
mated coefficient, yet the bias is not reported here because the
bias is virtually zero for all estimators. The results in Table 1
confirm that the proposed approach outperforms Koenker
and Bassett’s one in terms of smaller standard errors for
all cases. More specifically, the proposed method yields more
efficient estimators as the within-subject correlations become
stronger. For statistical inference on the regression quantiles,

a coverage probability of a 95% bootstrap confidence interval
is calculated using a sample standard error obtained from a
bootstrapping approach in 500 bootstrap samples. Most of
coverage probabilities are close to the nominal 95% level and
are not reported. We also report the standard errors of estima-
tors obtained by Tang and Leng’s approach under the AR(1)
structure in Table 1. The results are comparable to those of
the proposed estimators in cases under consideration.

For each simulated data set, all quantiles of the gen-
erated responses decrease linearly. As such, we evaluate
whether or not the proposed criterion adopts the linear
growth curve quantile as the most parsimonious model at
three quantiles. The proportion of time that the ELBIC
obtains p̂ �= 2 out of 500 simulations is less than 1% regard-
less of the level of the quantiles. This ensures that the
proposed model selection approach chooses the true growth
curve model with a high frequency. In addition, the proposed
hypothesis test is conducted to assess the equality of the
three growth curves. The proposed test detects the differ-
ence between the growth curves successfully, since the null
hypothesis with d = 3 in equation (5) is rejected every time
at a significance level of 0.05 for all cases under considera-
tion.

We further evaluate the finite sample performance of the
proposed hypothesis test by generating three identical growth
curves by setting B in equation (8) as

B =
(

20 20 20

−1 −1 −1

)
.

We compute test statistic (6) under the AR(1) structure and
count the number of times H0 in (5) is rejected with d = 3 at
a significance level of 0.05 out of 500 simulations. The rejec-
tion rates (0.043, 0.049, and 0.046 at τ = 0.25, 0.5, and 0.75,
respectively) are all close to the nominal level. In addition,
three quantile–quantile plots reported in Figure 2 indicate
that the empirical quantiles of the test statistic follow the
theoretical chi-square quantiles sufficiently well under the null
hypothesis.

Figure 2. Quantile–quantile plots for the chi-square distribution with four degrees of freedom versus the proposed test
statistic testing the equality of the three curves at three quantiles.
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3.2. Analysis of the Depression Study

We illustrate the proposed method through analysis of a ran-
domized controlled trial study conducted in Washington, D.C.
from March 1997 through May 2002. The data consist of 267
women who were suffering from depression. Participants were
primarily working poor Latina and Black women who are
less likely to receive appropriate treatment for depression care
due to their minority status. They were randomly assigned to
one of three groups: an antidepressant medication interven-
tion (medication, 88 women), a psychotherapy intervention
using manual-guided cognitive behavior therapy (psychother-
apy, 90 women), or referral to community mental health
services (referral, 89 women). The Hamilton depression rating
scale was examined monthly from baseline through 6 months;
women with higher scores indicate more severe depression.
Further details about the design, methods and medical impli-
cations of the study can be found in Miranda et al. (2003).

The objective of this study is to explore the three treat-
ment effects on different quantile levels of depression severity
over time. Given the τth quantile level, the growth curve of
depression scores for three groups is modeled as

Qτ(Y|Tτ ,H) =

⎛⎜⎜⎜⎝
1 1 . . . 1

0 1 . . . 6

...
...

. . .
...

0pτ−1 1pτ−1 . . . 6pτ−1

⎞⎟⎟⎟⎠
T ⎛⎜⎝

β1 βpτ+1 β2pτ+1

...

βpτ β2pτ β3pτ

⎞⎟⎠

×

⎛⎜⎝188 0 0

0 190 0

0 0 189

⎞⎟⎠
T

= TτBτH.

We evaluate the growth curve of the three treatments at
τ = 0.25, 0.5, and 0.75. Before the model is assessed, we first
select the most parsimonious model through the proposed
criterion (7) under the AR(1) correlation structure at three
levels of τ, and adopt the quadratic growth curve for τ = 0.25,
and the linear growth curve for τ = 0.5 and 0.75, respectively.
Given the selected value of pτ at each τ, we estimate βi,
i = 1, . . . , 3pτ , in Bτ using the proposed estimation procedure
under the AR(1) correlation structure, compute its standard
error based on 500 bootstrap samples, and report in Table 2.
All estimated coefficients are statistically significant, since
their 95% bootstrap confidence intervals do not include zero.
For τ = 0.5 and 0.75, all treatment effects are beneficial,
indicating that the depression scores decrease over time, since
the signs of coefficients corresponding to a linear polynomial
are all negative. With the proposed estimators, we plot the
fitted growth curves for three groups at τ = 0.25, 0.5, and
0.75 as exhibited in Figure 3. This figure indicates that all
treatments are effective at reducing depression scores over
a given period of time at τ = 0.25, yet the reduction ratio
is decreasing due to the positive quadratic term. This can
be explained by the fact that the fitted score is getting
closer to zero over time while preserving the positive value.

Table 2
Estimated coefficients and standard errors (in brackets) obtained from the proposed approach under the AR(1) structure and

Koenker and Bassett’s one assuming the working independence

Proposed K & B

τ = 0.25
Medication Intercept 13.24 (0.20) 13.23 (0.26)

Linear −3.71 (0.10) −3.76 (0.11)
Quadratic 0.34 (0.02) 0.35 (0.02)

Psychotherapy Intercept 12.26 (0.28) 12.27 (0.24)
Linear −3.72 (0.07) −3.78 (0.09)

Quadratic 0.42 (0.02) 0.45 (0.02)
Referral Intercept 12.39 (0.33) 12.59 (0.30)

Linear −3.27 (0.11) −3.24 (0.17)
Quadratic 0.42 (0.02) 0.39 (0.03)

τ = 0.50
Medication Intercept 16.01 (0.47) 15.83 (0.59)

Linear −1.61 (0.17) −1.66 (0.15)
Psychotherapy Intercept 14.84 (0.40) 14.03 (0.56)

Linear −1.09 (0.16) −1.07 (0.16)
Referral Intercept 14.28 (0.45) 14.34 (0.50)

Linear −0.49 (0.19) −0.50 (0.20)
τ = 0.75

Medication Intercept 20.55 (0.49) 20.16 (0.46)
Linear −1.11 (0.17) −1.23 (0.18)

Psychotherapy Intercept 18.51 (0.56) 18.82 (0.66)
Linear −0.90 (0.28) −0.98 (0.25)

Referral Intercept 19.51 (0.53) 19.33 (0.56)
Linear −0.35 (0.13) −0.38 (0.15)
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Figure 3. Fitted growth curves for medication (solid), psychotherapy (dashed), and referral (dotted) group at three
quantiles.

In addition, Figures 1 and 3 confirm that subjects are well
randomized to three groups since the fitted quantiles of the
depression scores at baseline are comparable between three
groups. We also fit the parsimonious model to the data
using Koenker and Bassett’s approach assuming the working
independence, and report the estimated coefficients and
standard errors in Table 2. The results are comparable to the
proposed approach, yet most of the standard errors increase.

When the treatment effects are compared, the intervention-
based care for depression appears to be effective relative to
referral to community care regardless of τ, while medication
and psychotherapy treatments performed similarly. Thus, we
further conduct the proposed hypothesis test for compar-
ing each pair of curves to see if they are different at each
quantile level. Table 3 provides the test statistics along with
p-values. We conclude at a significance level of 0.05 that
the proposed test rejects the null hypothesis when medica-
tion and referral groups are compared for all three quantiles,
while it fails to reject the equality between the growth curves
of medication and psychotherapy group. In addition, this
test fails to reject the null when psychotherapy and referral
groups are compared, yet the p-value gets closer to 0.05 as
the level of τ decreases (0.259, 0.089, and 0.059 at τ = 0.75,
0.5, and 0.25, respectively). In summary, the psychotherapy
intervention can be effective as compared to referral to com-
munity care at τ = 0.25, while the medication intervention
is always more beneficial regardless of the quantile level of
depression.

We remark that for τ = 0.75, the test result seems to con-
tradict the last plot as shown in Figure 3; the null is rejected
only for comparison of medication and referral groups, while
the fitted linear curve for psychotherapy group is farther from
the referral group’s curve than the medication group’s one. In
order to reject the equality of two linear curves at τ = 0.75,
the difference between intercepts or slopes in the two lines
should be statistically significant. According to Figure 3, the
difference of the curves for psychotherapy and referral groups
is mainly due to the gap between their estimated intercepts.
However, this might not be enough to reject the equality due
to a large variation of the intercepts, that is, a large stan-
dard error as shown in Table 2. This finding emphasizes the
necessity of the proposed hypothesis test in the analysis of
the depression study.

4. Discussion

Quantile regression for longitudinal data has been extensively
discussed over the last few decades; see Jung (1996), He, Fu,
and Fung (2003), Koenker (2004), Geraci and Bottai (2007),
Yi and He (2009), Tang and Leng (2011), Wang and Zhu
(2011), and Lu and Fan (2015). However, most of the afore-
mentioned references mainly focus on estimation of quantile
regression parameters under the linearity assumption between
outcomes and measurement times. As shown in the analysis
of the depression data of Section 3.2, this assumption could
be too restrictive to describe the longitudinal trajectory of

Table 3
Test statistics and p-values comparing treatment groups indicating whether or not they are same at three quantiles. Denote

medication, psychotherapy, and referral groups by M, P, and R, respectively.

τ M vs. P P vs. R M vs. R

0.25 ELTτ 5.992 7.440 11.678
p-value 0.112 0.059 0.009

0.50 ELTτ 2.336 4.949 6.898
p-value 0.311 0.084 0.032

0.75 ELTτ 2.416 2.706 8.919
p-value 0.299 0.259 0.011
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the distribution of the outcomes at a certain level of τ. In
this article, we have offered a complete process in a nonlin-
ear quantile regression model; it provides the parsimonious
growth curve model, improves estimation efficiency of quan-
tile regression parameters, and conducts the hypothesis test
to compare several groups of interest in terms of the pattern
of the distribution of outcomes over time.

A polynomial growth curve model with a sufficiently high
degree may fit the longitudinal data sufficiently well. However,
it is not desirable in practice due to the complexity of the
model and the difficulty of interpretation. We have proposed
the Bayesian information criterion based on the empirical log-
likelihood ratio. This model selection approach adjusts the
balance between the complexity of the growth curve model
and lack of fit of the data effectively by selecting the opti-
mal degree of the polynomial curve at each quantile level.
Moreover, the empirical loglikelihood ratio has been used to
construct the hypothesis test for the equality of the growth
curves. The proposed test can be readily extended to the
model specification test for assessing whether a certain form
of growth curve fits the data adequately or not.

If the polynomial growth curve model no longer provides
a good fit to data, then a nonparametric model is a viable
alternative. For example, a spline basis can be used in place
of a polynomial in model (1) in which the number of knots
is allowed to increase with the sample size. An optimal num-
ber of knots and comparison of nonparametric growth curves
can be also implemented through our model selection and
hypothesis test.

5. Supplementary Materials

Supplementary materials available at the Biometrics website
on Wiley Online Library include R codes for Section 3.2, the
regularity conditions and the theoretical proofs.
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