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Adjusting a subject-specific time of
event in longitudinal studies
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Abstract

Biomedical studies often involve an event that occurs to individuals at different times and has a significant influence on

individual trajectories of response variables over time. We propose a statistical model to capture the mean trajectory

alteration caused by not only the occurrence of the event but also the subject-specific time of the event. The proposed

model provides a post-event mean trajectory smoothly connected with the pre-event mean trajectory by allowing the

model parameters associated with the post-event mean trajectory to vary over time of the event. A goodness-of-fit test

is considered to investigate how well the proposed model is fit to the data. Hypothesis tests are also developed to assess

the influence of the subject-specific time of event on the mean trajectory. Theoretical and simulation studies confirm that

the proposed tests choose the correctly specified model consistently and examine the effect of the subject-specific time

of event successfully. The proposed model and tests are also illustrated by the analysis of two real-life data from a

biomarker study for HIV patients along with their own time of treatment initiation and a body fatness study in girls with

different age of menarche.
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1 Introduction

In longitudinal studies, subjects are repeatedly measured in an effort to understand the mean trend of response
variables over time. The trend can often be influenced by a significant event. For example, the MIT Growth and
Development Study1,2 was conducted to explore the mean trend of body fat in girls over an adolescent period. One
of the key components in the prospective study is that menarche generally has a strong influence on changes in
body fat accretion to such an extent that menarche is often regarded as a critical event in the development of
obesity. Since age of menarche differs among individuals, it is very essential to accommodate not only the
occurrence of the event but also a subject-specific age of the event when the mean trend of body fat over time
is modeled.

Another example is a clinical trial of antiretroviral therapy (ART) in individuals infected with human
immunodeficiency virus (HIV) conducted in Haiti.3 In the HIV study, each patient had a personalized ART
timeline determined at the physician’s discretion. As a result, time of ART initiation varied ranging from a few
weeks to several years from the patient’s enrollment. Preliminary data analysis indicates that ART is likely to be
effective at reducing an inflammation biomarker, yet the rate of decrease is more likely to vary with time of ART
initiation. This suggests that the elapsed time from enrollment to initiation of ART is crucial in understanding the
inflammation biomarker mean trajectory over time.

The primary goal of this article is two-fold: (1) to provide interpretable models for fitting the dynamic mean
trend of a response variable over time and (2) to assess how the subject-specific time of event has an influence on
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changes in the longitudinal mean trend. If time of event remains the same across individuals, we can adopt the
piecewise polynomial model

YiðtijÞ ¼
�0 þ �1tij þ � � � þ �pt

p
ij þ �ij tij � c

�0 þ �1tij þ � � � þ �pt
p
ij þ �ij tij 4 c

(
ð1Þ

for i¼ 1, . . . , n and j¼ 1, . . . , ni, where n1, . . . , nn are the number of measurements from the n subjects, Yi(tij) is the
response variable measured at time tij for subject i at the jth visit, �k and �k, k¼ 0, . . . , p, are unknown constant
coefficients, �ij is a random error, and c is the common time of event for all individuals. In practice, tij is generally
defined by the study objective, such as an age in the analysis of the MIT study or visit time relative to enrollment in
the HIV study above.

By imposing the restrictions on model (1) that E{Yi(tij)} and its first p – 1 derivatives are continuous in time,
Gallant and Fuller4 connect two segments in equation (1) smoothly and develop the following model

YiðtijÞ ¼ �0 þ �1tij þ � � � þ �pt
p
ij þ �ðtij � cÞpþ þ �ij ð2Þ

where � is a unknown coefficient and ðtij � cÞpþ ¼ ðtij � cÞpIðtij � cÞ is a p-degree truncated polynomial term with a
fixed knot at the common time of event c. Although the trajectory change due to the event can be reflected on one
last term in model (2), it is not applicable for the aforementioned studies in which time of event differs between
individuals.

In order to accommodate the subject-specific time of event, we propose to formulate a time-of-event-dependent
regression model with a p-degree truncated polynomial term with a varying knot at an individual time of event as

YiðtijÞ ¼ �0 þ �1tij þ � � � þ �pt
p
ij þ �ðciÞðtij � ciÞ

p
þ þ �ij ð3Þ

where �(ci) is a smooth function of ci and ci is the ith individual time of event, such as age of menarche in the MIT
study or time of ART initiation in the HIV study for subject i. The proposed model allows time of the event to vary
across subjects. In addition, this modeling is intuitively appealing to researchers in that the varying knot resets the
origin of time of the event and provides an interpretable mean trajectory shift since the event occurs. In other
words, the first (pþ 1) terms are served as one common pre-event longitudinal mean trajectory and the post-event
mean trajectory change is reflected on the truncated polynomial term by incorporating the subject-specific time of
event. Therefore, the effect of the time of the event on the mean trajectory alteration is illustrated by evaluating the
varying coefficient �(ci) in model (3). The model can also be separated into two segments as

YiðtijÞ ¼
�0 þ �1tij þ � � � þ �pt

p
ij þ �ij tij � ci

�0ðciÞ þ �1ðciÞtij þ � � � þ �pðciÞt
p
ij þ �ij tij 4 ci

(
ð4Þ

where �kðciÞ ¼ �k þ
p
k

� �
ð�ciÞ

ð p�kÞ�ðciÞ for k¼ 0, . . . , p. Contrary to model (1), the longitudinal mean trajectory of

outcomes after the event depends on time of the event. Therefore, the proposed model enables us to explore the
dynamic mean change of the response variable by taking into account pre- and post-events simultaneously while
accommodating the subject-specific time of event.

In order to fit the proposed model to data, we approximate the varying coefficient by a spline basis function
expansion and employ quadratic inference functions (QIFs).5 QIF not only improves estimation efficiency of
regression parameters in model (3) by incorporating the within-subject correlation but also provides an
inference function for model diagnostic tests and goodness-of-fit tests. In model (3), the choice of a proper
polynomial degree plays an important role in determining the overall mean trend of outcomes over time. The
goodness-of-fit test based on QIF is able to select a proper polynomial degree of p consistently and consequently
the correctly specified model. After an optimal value of p is chosen, a hypothesis test is further proposed to
evaluate whether the longitudinal mean trajectory is influenced by the subject-specific time of event or not.

The notion of event is used to refer a presence of occurrence influencing longitudinal trend of a response
variable and should not be confused with the notion indicating study outcome in survival analysis. Duration
of time till event in our paper is not of interest rather understood as covariates in the longitudinal modeling.
The remainder of the paper proceeds as follows: Section 2 provides estimation and inference about the parameters
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in model (3). In Section 3, the finite sample performance of the proposed procedure is evaluated in two scenarios,
where �(ci) is varying or constant over a value of ci. Simulation studies suggest that the proposed test successfully
identifies whether or not time of the event affects the overall mean trajectory of response variables. In Section 4, we
fit the proposed model to real data sets from the two aforementioned studies and conclude that the time of the
event has an influence on changes in the longitudinal mean trajectory only in the clinical trial of HIV-infected
patients study not in the MIT Growth and Development study. We conclude with remarks in Section 5 and place
regularity conditions and theoretical proofs in Appendix 1.

2 Methodologies

2.1 Estimation of regression parameters

One of the key features of model (3) is that the unspecified nonparametric coefficient �(ci) adds flexibility in
modeling dynamic changes of the mean trend of response variables after a significant event occurs. To fit
model (3) to data, we approximate the nonparametric coefficient by a basis function expansion as
�ðciÞ �

Ph
j¼0 �jBj ðciÞ, where � j’s are unknown regression coefficients and fBj ð�Þ, j ¼ 0, . . . , hg is a set of basis

functions. Although the type of basis functions is not restricted in our procedure, we mainly focus our
attention on the q-degree truncated power spline basis function approximation with a set of u knots {km,
m¼ 1, . . . , u}, i.e., �(ci) is modeled as

�ðciÞ � �0 þ �1ci þ � � � þ �qc
q
i þ

Xu
m¼1

�qþmðci � kmÞ
q
þ ð5Þ

Note that the truncated power spline basis offers practical convenience in conducting statistical inference about
the effect of time of the event, since the polynomial function is nested within equation (5). With basis function
approximation, model (3) can be rewritten as

YiðtijÞ � �0 þ �1tij þ � � � þ �pt
p
ij

þ

n
�0 þ �1ci þ � � � þ �qc

q
i þ

Xu
m¼1

�qþmðci � kmÞ
q
þ

o
ðtij � ciÞ

p
þ þ �ij ¼ XiðtijÞ

>� þ �ij

where � ¼ ð�0, . . . ,�p, �0, . . . , �qþuÞ
>, XiðtijÞ ¼ ð1, tij, . . . , t

p
ij, ðtij � ciÞ

p
þ, . . . , c

q
i ðtij � ciÞ

p
þ, ðci � k1Þ

q
þðtij � ciÞ

p
þ, . . . ,

ðci � kuÞ
q
þðtij � ciÞ

p
þÞ
>, and �ij satisfies E(�ij)¼ 0.

For the estimation of �, generalized estimating equations (GEE)6 can be considered under the marginal
regression framework as

Xn
i¼1

XiA
�1=2
i Rið�Þ

�1A�1=2i ðYi � X>i �Þ ¼ 0 ð6Þ

where Xi ¼ ðXiðti1Þ, . . . ,Xiðtimi
ÞÞ, Yi ¼ ðYiðti1Þ, . . . ,Yiðtimi

ÞÞ
>, Ai is a diagonal variance matrix of Yi, and Ri(�) is a

working correlation matrix with a nuisance parameter vector of �. GEE can yield a consistent estimator of � by
solving equation (6) and improve estimation efficiency by incorporating the correlation among ni measurements.
However, an additional estimation of � in Ri(�) is required to obtain the efficient estimator of �. Moreover, GEE
does not provide a proper inference function for a goodness-of-fit test, which is essential to select the optimal
degree of a polynomial in model (3).

Alternatively, we adopt QIF.5 QIF models the inverse of Ri(�)
–1 in equation (6) as Rið�Þ

�1
¼
Pd

k¼1 bkMik, where
Mi1, . . . ,Mid are known basis matrices representing a working correlation matrix of Yi and b1, . . . , bd are unknown
constant coefficients. The choice of basis matrices depends on the type of Ri(�). For instance, if the working
correlation matrix is assumed to be a compound symmetry structure, its inverse can be represented with two basis
matrices, Mi1 and Mi2, where Mi1 is an identity matrix and Mi2 is a symmetric matrix with 0 on the diagonal and 1
elsewhere. If the working correlation matrix corresponds to an AR(1) structure, two basis matrices, Mi1 and Mi2,
are needed to approximate the inverse matrix; Mi1 is an identity matrix and Mi2 is a symmetric matrix with 1 on
the subdiagonal and 0 elsewhere. More details can be found in Qu et al.5 and Qu and Lindsay.7

By substituting Mi1, . . . , Mid for Ri(�)
–1 in equation (6), the estimator of � is obtained by minimizing QIF

Qp,‘ð�Þ ¼ ngð�Þ>Vð�Þ�1gð�Þ ð7Þ
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where ‘¼ 1þ qþ u is the number of basis functions, gð�Þ ¼
Pn

i¼1 gið�Þ=n, and Vð�Þ ¼
Pn

i¼1 gið�Þ gið�Þ
>=n with

gið�Þ ¼

XiA
�1=2
i Mi1A

�1=2
i ðYi � X>i �Þ

..

.

XiA
�1=2
i MidA

�1=2
i ðYi � X>i �Þ

0
BB@

1
CCA ð8Þ

QIF can yield a consistent and more efficient estimator than the one assuming the working independence
without estimating additional nuisance parameters associated with the working correlation structure.5. In
addition, the resultant estimator is most efficient among estimators obtained from the same set of estimating
equations in equation (8), since QIF optimally combines the estimating equations. We illustrate the asymptotic
distribution of the proposed estimator in the case of fixed-knot asymptotics, where the number of knots is assumed
to be fixed as the number of subjects goes to infinity. This is a very useful and practical condition8,9 in developing
statistical inference about model (3).

Theorem 1. Under regularity conditions 1–3 in Appendix 1, there exists a minimizer of Qp,‘(�), denoted by �̂, such
that

ffiffiffi
n
p
ð�̂ � �0Þ follows an asymptotic normal distribution with mean 0 and variance covariance matrix ð�>��1�Þ�1,

where � ¼ Ef@gið�0Þ=@�g, � ¼ Efgið�0Þ gið�0Þ
>
g, and �0 is a true value of �.

The root n consistency and asymptotic normality of the resultant estimator still hold even when the
assumed working correlation structure is misspecified under the regularity conditions. We remark that when
regression models with multiple varying coefficients are fitted, representing all varying coefficients by a number
of basis functions could be problematic due to overfitting the data. This could result in degrading the efficiency of
the parameter estimates and poor performance of statistical inferences; see Ruppert10 and Tian et al.11 An
alternative is to employ the penalized approaches based on QIF9,11. However, we are not concerned with
overfitting in our study, since basis function approximation is used only for one varying coefficient, as shown
in model (3).

2.2 Goodness-of-fit test and hypothesis

The choice of an optimal polynomial degree in model (3) is essential, since two segments of the longitudinal mean
trajectory are modeled as polynomials in time and the pattern of the segments depends on the polynomial degree.
Since QIF plays a similar role to the loglikelihood function, Qp,‘(�) in equation (7) is an effective tool in measuring
how well model (3) is fit to the data. We denote a chi-square distribution with r degrees of freedom as �2r . Recall
that d, p, and ‘ denote the number of basis matrices for the working correlation matrix, the polynomial degree of
the proposed model, and the number of basis functions for the varying coefficient �(ci), respectively.

Theorem 2. If regularity conditions 1–3 hold and model (3) is correctly specified, the asymptotic distribution of
Qp,‘ð�̂Þ is �

2
ðd�1Þð pþ‘ Þ.

Theorem 2 ensures that Qp,‘ð�̂Þ can be regarded as a goodness-of-fit test statistic that indicates whether
the proposed model is fit to the data sufficiently well. Under the assumption that a predetermined sufficiently
large number of basis functions, say ‘*, guarantees a consistent estimate of �(ci), a proper polynomial degree,
say p*, is obtained based on the criterion Qp�,‘� ð�̂Þ5 	�ð�

2
ðd�1Þð p�þ‘�ÞÞ at a significance level of �, where

	�ð�
2
ðd�1Þð p�þ‘�ÞÞ is the (1 – �)th quantile of �2ðd�1Þð p�þ‘�Þ. We remark that model (3) with order p* is not nested

within model (3) with a higher order polynomial due to the restrictions that the expected value of the response
variable in model (3) and its first p – 1 derivatives are continuous in time. Our simulation studies also confirm that
when model (3) with order p* is true, the goodness-of-fit test always rejects all models except the one with the true
order of p*.

After the proper polynomial degree is chosen, it is of particular interest to evaluate whether a subject-specific
time of event has an influence on longitudinal mean trajectory alteration or not. Since the truncated polynomial
term reflects changes in the mean trend due to the event, �(ci) illustrates the effect of time of event on longitudinal
mean trajectory alteration. That is, this is equivalent to testing whether �(ci) is constant over ci or not

H0 : �ðciÞ ¼ �0 versus H1 : �ðciÞ 6¼ �0 ð9Þ
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We note that � ¼ ð�0,�1, . . . ,�p, �0, �1, . . . , �qþuÞ
>
¼ ð�>s , �

>
� Þ
> and �s ¼ ð�0,�1, . . . ,�p, �0Þ

>. Since �� is a zero
vector under H0, an appropriate test statistic for testing H0 against H1 is

T ¼ Qp�,‘� ð ~�Þ �Qp�,‘� ð�̂Þ

where ~� ¼ ð ~�>s , 0, . . . , 0Þ> and ~�s is a minimizer of Qp�,1ð�sÞ ¼ ngsð�sÞ
>Vsð�sÞ

�1gsð�sÞ having gsð�sÞ ¼Pn
i¼1 gisð�sÞ=n, Vsð�sÞ ¼

Pn
i¼1 gisð�sÞ gisð�sÞ

>=n, and gis(�s) is a subset of estimating equations in gi(�) associated
with �s only.

Theorem 3. Under regularity conditions 1–3 and the null hypothesis in equation (9), the asymptotic distribution of the
proposed test statistic T is �2‘��1.

Theorem 3 ensures that �(ci) is varying with ci if the test statistic is greater than the (1 – �)th quantile of �2‘��1 at
the nominal level of �. If the null hypothesis is not rejected, there is no substantial evidence that changes in the
longitudinal mean trajectory are affected by the subject-specific event time. We remark that the hypothesis
statements and corresponding test statistic can be readily modified upon the aim of the scientific interest. For
instance, if the null hypothesis is not rejected, it is of particular interest to check if the pattern of the longitudinal
mean trajectory over a range of time is altered after the event occurs. This can be readily examined by testing H0 :
�(ci)¼ 0 against H1 : �(ci) 6¼ 0.

We remark that the aforementioned inferences are all conducted under the proposed model with a sufficiently
large number of basis functions ‘*. Several references9–11 suggested that the upper limit of the degree of the
truncated polynomial and the number of knots could be set as 3 and 10, respectively, where the knots are
evenly distributed within the range of time in practice. Our extensive numerical studies have also suggested that
the 3-degree truncated power spline basis with 10 equally distributed knots fits the true varying coefficient
sufficiently well. Moreover, the proposed model is still effective even when �(ci) is overfitted, i.e., the
longitudinal mean trajectories are comparable in cases where the number of knots are 10 or above. The results
suggest the penalized based approach would be unnecessary, although the number of basis functions can be
reduced using QIF-based Bayesian information criterion proposed by Wang and Qu.12

3 Simulation studies

In this section, empirical studies are conducted to numerically examine the efficiency of the proposed parameter
estimation method and the effectiveness of the hypothesis tests suggested in Section 2.2. Correlated continuous
responses are generated as

YiðtijÞ ¼ �0 þ �1tij þ �2t
2
ij þ �ðciÞðtij � ciÞ

2
þ þ �ij ð10Þ

where �0 ¼ �1 ¼ �2 ¼ 1, tij ¼ jþUnifð�1, 0Þ for i 2 {1, . . . , 200} and j 2 {1, . . . , 6}, an individual value of ci is
generated independently from Unif(1, 5), and �i¼ (�i1, . . . , �i6)

> is generated independently from a multivariate
normal distribution �i¼ (�i1, . . . , �i6)�N(0, �) with � being an AR(1) correlation structure with a correlation
coefficient of 0.8. To generate unbalance data, we drop Yij from the simulated data set when Mij¼ 0, where Mij is
an indicator randomly generated from Pr(Mij¼ 1)¼ 0.8. This leads to a different number of observations
measured from each subject at unequally spaced time points between 0 and 6. From 1000 simulated data sets,
the performance of our proposed procedure is demonstrated in two scenarios, where �(ci) is varying with c as
�ðciÞ ¼ ci þ cosð
ciÞ or constant as �(ci)¼ 1.

3.1 Scenario 1: cðciÞ ¼ ci þ cosðpciÞ

We first conduct a goodness-of-fit test to find the optimal degree of the polynomial using the proposed approach
with the spline basis of �(ci) having 10 equally distributed knots and 3-degree polynomial basis functions under the
AR(1) and compound symmetry working correlation structures. The rejection rates of choosing the quadratic
polynomial at a significance level of 0.05 are 0.035 and 0.031, respectively, while both linear and cubic regression
models are always rejected in the 1000 simulation runs. Figure 1 provides quantile-quantile plots for testing
whether or not model (3) with p¼ 2 is fit to each simulated data set sufficiently well. The top two plots confirm
the effectiveness of the goodness-of-fit test regardless of the correlation structure. We further test H0 : �(ci)¼ �0
and note that the proposed test rejects the null hypothesis every time.

Cho et al. 1791



In model (10), the estimator of �k, k¼ 0, 1, 2, and their standard error are evaluated under the AR(1),
compound symmetry, and independent working correlation structures. Table 1 reports mean squared errors,
coverage probabilities, and average lengths of 95% confidence intervals. Note that the confidence intervals are
formulated based on the asymptotic result in Theorem 1 using the estimated limiting covariance matrix of �

1

n

Xn
i¼1

@gið�̂Þ

@�

( )>
1

n

Xn
i¼1

gið�̂Þ gið�̂Þ
>

( )�1
1

n

Xn
i¼1

@gið�̂Þ

@�

( )2
4

3
5
�1

The results show that the mean squared errors under the AR(1) structure are smaller than the ones ignoring the
within-subject correlation. Even if the working correlation is misspecified with a compound symmetry structure,
the proposed method still yields more efficient estimators compared to the one under the independent correlation
structure. With regard to statistical inference about the regression parameter, coverage probabilities are between
0.93 and 0.95 when correlation information is accommodated, while those are above 0.96 under the independent
correlation structure. This can be explained by the fact that the confidence intervals, assuming the working
independence, are wider in all cases under consideration. These results suggest that the proposed procedure
achieves estimation efficiency and effective inference by accommodating the within-subject correlation.

To evaluate how the proposed method estimates �(ci), the mean integrated squared error for �(ci) is defined as
MISEf�̂ðcÞg ¼

P39
k¼1 f�̂ðckÞ � �ðckÞg

2=39, where �̂ðckÞ are estimates of �(ck) from c1, . . . , c39 and are evenly space
time points on (1, 5). Figure 2 provides fitted varying coefficient curves corresponding to nine deciles of the mean

Figure 1. Top: Quantile-quantile plots for goodness-of-fit tests comparing the chi-square distribution with 17 degrees of freedom

and quadratic inference function under AR(1) (left) and compound symmetry (right) in Scenario 1. Bottom: Quantile-quantile plots for

hypothesis tests comparing the chi-square distribution with 13 degrees of freedom and the proposed test statistic under AR(1) (left)

and compound symmetry (right) in Scenario 2.
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integrated squared errors from 1000 simulations. This figure shows that the fitted curves successfully capture the
true pattern of �(ci).

3.2 Scenario 2: c(ci)¼ 1

In line with the aforementioned process in Section 3.1, the goodness-of-fit test is conducted to select the true
model. The type-I errors are close to a level of 0.05: 0.041, and 0.036 under the AR(1) and compound symmetry in
model (10), respectively. Quantile-quantile plots are also drawn and similar to the top two plots in Figure 1 and,
thus, are omitted here. Next, we conduct a hypothesis test to determine whether �(ci)¼ �0 or not. The rejection
rates at a nominal level of 0.05 are 0.05 and 0.046 under both AR(1) and compound symmetry structures,
respectively. The bottom plots in Figure 1 also show that the empirical quantiles of the test statistic follow the
theoretical chi-square quantile sufficiently well. We further test H0 : �(ci)¼ 0 to check if a one-piece function of
time is enough to fit data and the hypothesis test always reject H0.

Following the above test results, we set �(ci) to be a nonzero constant value of �0 and evaluate the estimator of
the regression parameters and their standard error in model (10) under the AR(1), compound symmetry, and
independent structures. For the purpose of comparison, we also let �(ci) vary with 10 knots and 3-degree
polynomial basis functions and fit model (10) to the data. As shown in the second- and third-row blocks in
Table 1, the results under the varying coefficient of �(ci) are comparable with those reported in Scenario 1.
However, the proposed procedure in the model with a constant value of �(ci) yields more efficient estimators

Figure 2. A true value of �(ci) (black solid curve) and fitted varying coefficients (gray dashed curve) corresponding to nine deciles of

mean integrated squared errors from 1000 simulations in Scenario 1.

Table 1. Mean squared errors (MSE), coverage probabilities, and average lengths of 95% confidence interval under the AR(1),

compound symmetry (CS), and independent (IN) working correlation structures in Scenario 1, �(ci)¼ ciþ cos(
ci), and Scenario 2,

�(ci)¼ 1, respectively.

MSE	 100 Coverage probability Average length

Scenario �0 �1 �2 �0 �1 �2 �0 �1 �2

1 AR(1) 0.815 0.477 0.024 0.932 0.931 0.940 0.164 0.120 0.026

Varying CS 0.949 0.645 0.034 0.932 0.943 0.940 0.171 0.132 0.030

�(ci) IN 0.987 0.730 0.039 0.969 0.981 0.965 0.211 0.197 0.042

2 AR(1) 0.779 0.414 0.021 0.935 0.937 0.940 0.163 0.119 0.026

Varying CS 0.897 0.500 0.025 0.937 0.939 0.942 0.170 0.134 0.030

�(ci) IN 0.970 0.696 0.037 0.965 0.979 0.963 0.203 0.190 0.040

2 AR(1) 0.741 0.289 0.010 0.946 0.953 0.948 0.164 0.100 0.018

Constant CS 0.815 0.317 0.011 0.951 0.949 0.950 0.170 0.105 0.019

�0 IN 0.901 0.408 0.015 0.956 0.984 0.971 0.190 0.150 0.026

Cho et al. 1793



than the one in the model with a varying coefficient in terms of smaller mean squared errors. In addition, all the
coverage probabilities in the former model are closer to the nominal level in the cases under consideration.

4 Real data analysis

In this section, we consider the proposed model for analyzing data from two different studies. The first illustration
uses data on a biomarker on inflammation from a clinical trial of HIV-infected patients conducted in Haiti. The
other uses data on body fat accretion from a prospective study of the development of obesity in a cohort of girls.

4.1 Influence of time of therapy on changes in the biomarker trend

This data set consists of longitudinal biomarker measurements from 408 HIV-infected adults as part of a clinical
trial study conducted in Haiti. A description of the study and information on the whole data set can be found in
Severe et al. 3 Here, we present a brief summary. HIV-infected adults with CD4 counts between 200 and 350/mm3

at baseline were enrolled in the study and ART was given while patients were in care. In HIV-infected patients,
inflammation is associated with other disease progression such as cardiovascular disease and chronic anemia. An
inflammation biomarker, interleukin (IL)-6, was collected every year or less from enrollment before ART
initiation and every 6 months thereafter. ART timeline was determined at the physician’s discretion and ART
initiation could be at any in-between visits other than scheduled visits. As a result, time of ART initiation varied
across patients. Median pre-ART follow-up time was 1.3 years with first and third quartiles of 0.9 and 2.0 years,
respectively. Median post-ART follow-up time was 2.7 years with first and third quartiles of 1.8 and 2.8 years,
respectively.

The objective of the study for clinicians was to study the IL-6 mean trend over time while accounting for the
subject-specific time of therapy and to assess whether the post-ART IL-6 mean trajectory shift depends on the
elapsed time until treatment. Therefore, we define tij and ci for patient i as time relative to enrollment at the jth visit
and waiting time from enrollment to treatment, respectively, and explore the longitudinal mean trajectory of IL-6
by fitting the proposed model in equation (3) to the data. Through the goodness-of-fit test under the AR(1)
correlation structure, the piecewise cubic polynomial model in which �(ci) consists of 10 knots and 3-degree
polynomial is chosen along with a P-value of 0.12 at a level of 0.05. Note that P-values for linear and
quadratic polynomial models are 0.006 and 0.001, respectively.

We further conduct the hypothesis test of the constant value of �(ci) over c and reject the null hypothesis with a
P-value of 0.02. The estimated varying coefficient �(ci) is drawn in Figure 3. The figure shows that the estimated
coefficient is negative and becomes smaller over time. Table 2 reports estimated invariant coefficients along with
standard errors, test statistics, and P-values. The results indicate that all coefficients are statistically significant at a
level of 0.05. For ease of presentation, we further provide the fitted mean trend of outcomes at four different time

Figure 3. An estimated varying coefficient over 2 years (left) and four fitted IL-6 mean trajectories (right) at different times of

treatment; year of 0.5 (solid), 1 (longdash), 1.5 (dashed), and 2 (dotted).
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of treatment in Figure 3. This figure shows that although the average of IL-6 decreases after treatment regardless
of treated times, the rate of decrease becomes smaller as time of ART initiation is delayed. This confirms that ART
is effective at reducing an inflammation biomarker, but the effectiveness of ART decreases as time of ART
initiation is delay.

Figure 4. Blue curve is the fitted % body based on the proposed methods and red curve is fitted to a subset of data where age of

menarche, displayed as a vertical line, is 11, 12, 13, and 14 using the kernel regression.

Table 2. Estimated coefficients, standard errors, and test statistics along with P-values

in Sections 4.1 and 4.2.

Section Coefficient SE Test statistic P-value

4.1

�0 �0.617 0.069 �8.962 <0.001

�1 0.851 0.158 5.382 <0.001

�2 �0.837 0.123 �6.831 <0.001

�3 0.183 0.028 6.530 <0.001

4.2

�0 21.175 0.570 37.164 <0.001

�1 0.046 0.137 0.334 0.739

�2 2.164 0.220 9.824 <0.001

�0 19.951 1.557 12.812 <0.001

�1 0.103 0.133 0.773 0.439

�0 2.098 0.217 9.663 <0.001
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4.2 Influence of menarche on changes in body fat accretion

An objective of the MIT Growth and Development Study1.2 is to explore the mean trend of body fat of girls over
an adolescent period. As mentioned in Section 1, menarche has an influence on changes in body fat accretion. To
be specific, increases in body fat in girls is likely to begin just before or around menarche. To examine the influence
of menarche on changes in percent body fat, Naumova et al.13 analyzed 162 girls from a subset of data from the
MIT Growth and Development Study. All girls were pre-menarcheal and nonobese at the start of the study and
each subject was measured annually from approximately an age of 10 until 4 years after menarche. More details on
these data can be found in Naumova et al.13

Naumova et al.13 defined time relative to menarche as �ij¼ tij – ci, where tij and ci are the ith subject’s age at the
jth visit and age of menarche, respectively. This allows us to fit model (1) with p¼ 1 and the same time of event,
i.e., YiðtijÞ ¼ �0 þ �1�ij þ �2ð�ijÞþ þ �ij, where �ij¼ 0 at menarche and Yij is the ith subject’s percent body fat at the
jth visit. Although the analysis can address the mean rates in change of percent body fat due to menarche as shown
in Table 2, the mean percent body fat at a particular age of menarche is not feasible because time relative to
menarche is used for modeling. As a result, the inability to investigate the mean trend of the percent of body fat
with physical age could be interpreted as a weakness of this approach. Moreover, the linearity between outcomes
and measurement times and the same mean rates change in percent body fat across age of menarche were assumed
without proper evaluation beforehand.

To tackle these problems, we fit model (3) to the data under the AR(1) correlation structure. A goodness-of-
fit test suggests that model (3) with the spline basis of �(ci) having 10 knots and 3-degree polynomial basis
functions fits the data sufficiently well only when the polynomial degree is one. Under the time-of-event-
dependent piecewise linear model, we test H0 : �(ci)¼ �0 and fail to reject H0 with a P-value of 0.66. Hence,
we fit the piecewise linear model with a constant value of �0 to the data and report the estimated coefficients,
standard errors, and test statistics along with P-values in Table 2. The results show that an estimate of �0 is
positive and statistically significant at a nominal level of 0.05, yet an estimated one of �1 is not significantly
different from zero with a P-value of 0.439. This suggests that the mean percent body fat remains the same
before menarche, yet starts to increase at the same rate after menarche, regardless of the age of menarche. In
Figure 4, we also provide the fitted piecewise linear mean trend of outcomes and the Nadaraya–Watson kernel
regression curve obtained from a subset of data where the age of menarche is 11, 12, 13, and 14 years. The
figures show that the proposed model successfully describes the pattern of percent body fat over time in all cases
under consideration.

5 Concluding remarks

In biomedical studies, it is often of interest to evaluate the effect of an event on changes in an outcome.
A randomized clinical trial can be a useful tool in determining the effect of the event while controlling for time
of the event. In practice, however, many medical studies are not eligible for randomized clinical trials, which can
lead to a subject-specific time of the event. Therefore, we have proposed a new statistical model to study repeatedly
measured outcomes for longitudinal data in the presence of a subject-specific time of event. The proposed model
enables us to determine not only whether the event has an impact on changes in the outcome but also whether the
effectiveness is influenced by the time of the event.

In particular, we have modeled the mean response over time where the degree of the mean trajectory
alteration is indexed by time of event. With the basis function approximation in equation (5), the proposed
model can be readily fitted to the data by existing R package QIF or SAS Macro QIF. More details about this
implementation can also be found in the Supplement. In addition to ease of the implementation, goodness-of-fit
test based on QIF is readily available as a byproduct and is useful for researchers exploring various shapes of
pattern and seeking an optimal degree of a polynomial. We take full advantage of QIF by employing the
goodness-of-fit test to evaluate the effect of time of event to mean trend alteration as well. Our simulation
studies have confirmed that QIF is an effective tool in both estimation and statistical inference. In addition, we
have applied the proposed model to the biomarker study for HIV patients with different times of ART initiation
and the body fat study in girls with their own age of menarche and confirmed different results on time of each
event. That is, the body fatness turns to increase after menarche, yet the average rate of increase remains
the same regardless of time of the event, whereas IL-6 is influenced by both ART and its initiated time in
the HIV study.
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Appendix 1

The following standard conditions are imposed to study the asymptotic properties of �̂ in the proposed marginal
mean regression model:

(1) There exists a �0 2 �, where � is the compact parameter space, such that E{gi(�)}¼ 0 for i¼ 1, . . . , n if and
only if �¼ �0.

(2) The vector gi(�) is continuously differentiable with respect to � and � ¼ Ef@gið�0Þ=@�g is of full rank.
(3) The matrix � ¼ Efgið�0Þ gið�0Þ

>
g is positive definite.

Proof of Theorem 1. By Taylor expansion, we have

gð�̂Þ ¼ gð ��0Þ þ _gð�Þð�̂ � �0Þ ð11Þ
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where _gð ��Þ ¼ @gð�Þ=@� and �� lies between �̂ and �0. By multiplying the equation (11) by _gð�̂Þ>Vð�̂Þ�1, it immediately
follows that

_gð�̂Þ>Vð�̂Þ�1gð�̂Þ ¼ _gð�̂Þ>Vð�̂Þ�1gð�0Þ þ _gð�̂Þ>Vð�̂Þ�1 _gð ��Þð�̂ � �0Þ

Note that the left hand side _gð�̂Þ>Vð�̂Þ�1gð�̂Þ ¼ 0 because �̂ is the minimizer of gð�Þ>Vð�Þ�1gð�Þ. Therefore, the
equation can be rearranged as

ð�̂ � �0Þ ¼ �f _gð�̂Þ
>Vð�̂Þ�1 _gð ��Þg�1 _gð�̂Þ>Vð�̂Þ�1gð�0Þ ð12Þ

It follows from _gð�̂Þ!
p

�, Vð�̂Þ!
p

�, and
ffiffiffi
n
p

gð�0Þ!
d
Nð0,�Þ that we have

ffiffiffi
n
p
ð�̂ � �0Þ!

d
Nð0, ð�>��1�Þ�1Þ

Proof of Theorem 2. By Taylor expansion and equation (12), we have

gð�̂Þ ¼ gð�0Þ þ _gð�0Þð�̂ � �0Þ þ opð1Þ

¼ fId ð pþ‘ Þ ��ð�>��1�Þ�1�>��1ggð�0Þ þ opð1Þ
ð13Þ

where Id(pþ‘) is the d(pþ ‘)-dimensional identity matrix. It follows from (13) and Vð�̂Þ ¼ �þ opð1Þ that

Qp,‘ð�̂Þ ¼ ngð�̂Þ>Vð�̂Þ�1gð�̂Þ

¼ ngð�0Þ
>
f��1 ���1�ð�>��1�Þ�1�>��1ggð�0Þ þ opð1Þ

¼ f
ffiffiffi
n
p

��1=2gð�0Þg
>fId ð pþ‘ Þ ���1=2�ð�>��1�Þ�1�>��1=2gf

ffiffiffi
n
p

��1=2gð�0Þg þ opð1Þ

Since
ffiffiffi
n
p

��1=2gð�0Þ!
d
Nð0, Id ð pþ‘ ÞÞ, ��1=2�ð�>��1�Þ�1�>��1=2 is an idempotent and symmetric matrix, and

its trace is pþ ‘, Qp,‘ð�̂Þ converges to a chi-squared distribution with (d – 1)(pþ ‘) degrees of freedom.

Proof of Theorem 3. The null hypothesis can be rewritten as H0 : �1 ¼ � � � ¼ �qþu ¼ 0, where � ¼
ð�0,�1, . . . ,�p, �0, �1, . . . , �qþuÞ

>
¼ ð�>s , �

>
� Þ
> and �s ¼ ð�0,�1, . . . ,�p, �0Þ

>. Under H0, i.e., �� is a zero vector, ~�s
is obtained by minimizing ngsð�sÞ

>Vsð�sÞ
�1gsð�sÞ, where Vs(�s) is a consistent estimate of Efgsð�sÞ gsð�sÞ

>
g and gs(�s)

is a subset of g(�) associated with �s. We accordingly denote �¼ (�s, ��), where �s ¼ Ef@gð�Þ=@�sg. It
consequently follows that under H0, we have

T ¼ Qp,‘ð ~�Þ �Qp,‘ð�̂Þ

¼ ngð�0Þ
>��1f�ð�>��1�Þ�1�> ��sð�

>
s ��1�sÞ

�1�>s g�
�1gð�0Þ þ opð1Þ

where

�ð�>��1�Þ�1�> � �s ��

� � f�>s ��1�sg
�1 0

0 0

 !
�>s

�>�

 !

¼ �sf�
>
s ��1�sg

�1�>s

Since both �ð�>��1�Þ�1�> and �sð�
>
s ��1�sÞ

�1�>s are idempotent and symmetric matrices with trace equal
to pþ ‘ and pþ 1, respectively, the test statistic converges to a chi-squared distribution with ‘ – 1 degrees of
freedom.
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