
Comput Stat (2016) 31:643–669
DOI 10.1007/s00180-015-0584-8

ORIGINAL PAPER

A multistage algorithm for best-subset model selection
based on the Kullback–Leibler discrepancy

Tao Zhang1 · Joseph E. Cavanaugh2

Received: 11 October 2013 / Accepted: 10 April 2015 / Published online: 24 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract The selection of a best-subset regression model from a candidate family
is a common problem that arises in many analyses. The Akaike information criterion
(AIC) and the correctedAIC (AICc) are frequently used for this purpose.AICandAICc

are designed to estimate the expected Kullback–Leibler discrepancy. For best-subset
selection, both AIC and AICc are negatively biased, and the use of either criterion
will lead to the selection of overfitted models. To correct for this bias, we introduce an
“improved” AIC variant, AICi , which has a penalty term evaluated usingMonte Carlo
simulation. A multistage model selection procedure AICaps, which utilizes AICi , is
proposed for best-subset selection. Simulation studies are compiled to compare the
performances of the different model selection methods.

Keywords Akaike information criterion · Linear models · Monte Carlo simulation ·
Variable selection

1 Introduction

The selection of a best-subset regression model from a candidate family is a common
analytical problem. In best-subset model selection, we consider all possible subsets
(APS) of regressor variables; thus, numerous candidate models may need to be fit and
compared. One of the main challenges of best-subset selection arises from the size of
the candidate model family: specifically, the probability of selecting an inappropriate
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model generally increases as the size of the family grows. For this reason, it is usually
difficult to select an optimal model when best-subset selection is attempted based on
a moderate to large number of regressor variables.

If one is inclined to assume that a true model exists, then the goal of model selection
is to search among a candidate family to find amodel that is “closest” to the truemodel.
The notion of closeness is quantified by a measure that reflects the disparity between
each fitted candidatemodel and the truemodel. Such ameasure is called a discrepancy.
One of themost popular discrepancies is theKullback–Liebler (K–L) discrepancy, also
known as the K–L (1951) information. The K–L discrepancy is applicable in nearly
all parametric frameworks, and because of its close connection to likelihood-based
principles, is considered one of the most important discrepancies in model selection.

In practice, it is impossible to evaluate the exact value of a discrepancy, since such
a measure depends on the generating model. However, under appropriate conditions,
one can often formulate a statistic to estimate a discrepancy. Such a statistic may be
used as a model selection criterion. A model selection criterion is designed to reflect
the propriety of a fitted candidate model. It reflects both the conformity of the fitted
model to the data, and the competing objective of model parsimony. If the value of the
criterion is small, then the objectives of conformity and parsimony are well balanced.
Such a candidate model will often satisfy the attribute of generalizability, and may
therefore be viewed as providing an adequate approximation to the generating model.

The most widely known and used model selection criterion is the Akaike (1973,
1974) information criterion (AIC). AIC is formulated as an asymptotically unbiased
estimator of the K–L discrepancy. The broad acceptance of AIC can be attributed to its
computational simplicity and its connection to likelihood theory. AIC can be applied
in any framework where the candidate models are fit usingmaximum likelihood (ML),
and the sample size is large enough to ensure the conventional large-sample properties
of maximum likelihood estimators.

Sugiura (1978), and later Hurvich and Tsai (1989), investigated the small-sample
properties of AIC in the framework of Gaussian linear regression models. They pro-
posed a corrected version of AIC, AICc, to provide a more accurate estimator of the
K–L discrepancy in small-sample settings. Extensive simulation studies have demon-
strated the small-sample superiority of AICc over AIC, and the criterion has been
extended to many modeling frameworks beyond that of Gaussian linear regression
(Hurvich et al. 1990; Hurvich and Tsai 1993; Bedrick and Tsai 1994).

The Schwarz (1978) information criterion (SIC), more commonly known as the
Bayesian information criterion (BIC), is designed to provide an approximation to a
transformation of the posterior probability of a candidate model.When the sample size
is large, BIC tends to select the candidate model that is a posteriori most probable.
BIC is a popular competitor to AIC, partly because of its Bayesian justification, and
partly for its tendency to favor parsimonious models.

AIC and AICc are both developed as estimators of the K–L discrepancy. In essence,
these criteria are comprised of two parts, the goodness-of-fit term and the penalty term.
The goodness-of-fit term is designed to measure the conformity of the fitted model
to the data at hand. However, the goodness-of-fit term serves as a negatively biased
estimator of the targeted discrepancy. Efron (1983, 1986) refers to the bias as the
expected optimism. The penalty term is designed to correct for this bias.
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The penalty term reflects model complexity. In the linear regression setting, the
complexity of a candidate model is dictated by the rank of the design matrix. In such
a framework, the penalty term of AIC is 2(p + 1), where p denotes the rank and
(p + 1) corresponds to the number of parameters in the fitted model. AICc employs
the penalty term [2(p+1)n]/(n− p−2), where n is the sample size. In large-sample
settings, the penalizations of AIC and AICc are essentially the same. BIC utilizes a
penalty that increases in accordance with the sample size, (p+1) log(n). In the setting
of best-subset model selection, the number of candidate models for each subset size
plays a large part in determining the expected optimism. Unfortunately, none of these
traditional model selection criteria take this factor into account. Thus, these criteria
might be inappropriate criteria in the best-subset setting.

Improved AIC, or AICi , is another variant of AIC that is based on a flexible
and accurate estimator of the expected optimism. The criterion was first proposed
by Hurvich et al. (1990) as a refinement to AIC in selecting univariate Gaussian
autoregressive models. With AICi , the penalty term is based on simulation, where the
generatingmodel is assumed to yield aGaussianwhite noise process. Using simulation
to approximate the expected optimism avoids the need for an analytic derivation and
any accompanying large-sample assumptions. Simulation results featured in Hurvich
et al. (1990) demonstrate that when the sample size is small and the candidate models
are estimated by ML, AICi outperforms AIC as well as AICc. However, the authors
only examine simulation settings where the true autoregressive order is small. The
selection behavior of AICi has not yet been assessed for larger generating orders.

The literature that explicitly addresses the problem of best-subset model selection
is somewhat scant. A notable contribution is the criterion proposed by Tibshirani and
Knight (1999), the covariance inflation criterion (CIC). The computation of CIC is
intensive, requiring permuted versions of the data set. The estimate of the expected
optimism is based on the covariance between the responses and their corresponding
predicted values. Unfortunately, CIC only tends to work well when the generating
model is null. When the generating model is not null, CIC often fails to protect against
the inclusion of spurious regressors.

The major objective of our study is to develop improved model selection methods
for best-subset regression.We focus on the important case where the size of the sample
is moderate relative to the number of parameters in the largest candidate models. The
methodwe propose is designed to outperform the procedure that is conventionally used
in best-subset applications: i.e., choosing the fitted model among the entire candidate
collection that minimizes a traditional criterion such as AIC or BIC. Our method aims
to increase the probability of selecting an appropriate model structure, while striking
a balance between overfitting and underfitting.

As standard model selection criteria, AIC and AICc are designed to estimate the
expected K–L discrepancy. For best-subset selection, these standard criteria exhibit
estimation bias that depends on the number of candidate models of a particular subset
size. The development of our method is motivated by the need to adjust for this bias.
We accomplish this objective by selectively employing a penalty term based onMonte
Carlo simulation. When some of the models of a particular subset size are overfit, our
penalty term is devised to provide a more accurate approximation to the expected
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optimism than that provided by AIC or AICc. Accordingly, we anticipate that our
method will lead to improved model selections.

Our work is organized as follows. Section 1 serves as an introduction to this paper.
In Sect. 2, we provide necessary background and preliminary concepts. An overviewof
the K–L discrepancy is presented in the framework of linear models. Model selection
criteria based on estimation of the K–L discrepancy are then introduced; specifically
AIC, AICc, and AICi . Section 3 discusses the best-subset model selection problem
along with its challenges. In particular, for overspecified models, we illustrate the bias
inherent when standard criteria are used to estimate their corresponding discrepancies.
Section 4 is devoted to the development of a best-subsetmodel selection criterionAICi .
To define the target K–L discrepancy,we propose the concept of a representativemodel
as the target model. If a particular representative model is overspecified, the criterion
AICi is designed to approximate the corresponding K–L discrepancy. In Sect. 5, we
devise a multistage model selection procedure, AICaps, that adaptively compares the
criterion values of AICc and AICi across model collections of progressively larger
subset sizes. Simulation studies are reported in Sect. 6 to investigate the selection
behavior of AICaps, and to compare its performance to that of standard criteria. Finally,
Sect. 7 presents conclusions and future research directions.

2 The Kullback–Leibler discrepancy, AIC, AICc, and AICi

In this section, we focus on the setting of normal linear models. Suppose a collection
of data y is generated from a linear model

y = Xoβo + εo, (1)

where y is an n × 1 outcome vector; Xo is an n × po design matrix of full column
rank, with the first column consisting of 1s; βo is a po × 1 vector; and εo is an n × 1
error vector distributed as N (0, σ 2

o I). Let f ( y | θo, Xo) denote the joint density of
y corresponding to this model; i.e., N (Xoβo, σ

2
o I). Here, θo = (βT

o , σ 2
o )T .

Assume the proposed candidate model can be written as

y = Xβ + ε, (2)

where X is an n × p design matrix of full column rank, with the first column con-
sisting of 1s; β is a p × 1 vector; and ε is an n × 1 error vector distributed as
N (0, σ 2 I). Let f ( y | θ , X) denote the joint density of y corresponding to this model;
i.e., N (Xβ, σ 2 I). Here, θ = (βT , σ 2)T . Also, let l (θ | y, X) denote the log likeli-
hood corresponding to f ( y | θ, X).

The propriety of the candidate model can be assessed through the use of a dis-
crepancy, a measure that reflects the disparity between the candidate model and the
generating model. A well-known discrepancy is the K–L discrepancy, derived from
the K–L information (1968), which is defined as

dKL(θ , θo) = E∗{−2l (θ | y, X)}.
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Here, E∗ denotes the expectation under f ( y | θo, Xo). For linearmodels, if a constant
involving 2π is neglected, we have−2l (θ | y, X) = n log σ 2+‖ y−Xβ‖2/σ 2. Thus,
dKL(θ , θo) = n log σ 2 + nσ 2

o /σ 2 + ‖Xoβo − Xβ‖2/σ 2.

Let θ̂ =
(
β̂
T
, σ̂ 2

)T
denote the ML estimator of θ . Then for a fitted candidate

model f
(
y

∣∣∣ θ̂ , X
)
, the K–L discrepancy is given by

dKL
(
θ̂, θo

)
= E∗{−2l (θ | y, X)}|

θ=θ̂
.

The measure dKL(θ̂, θo) is a random variable that depends on the true model, and
therefore cannot be evaluated in practical applications. Thus, model selection criteria
are often developed by constructing estimators of the expected value of dKL(θ̂, θo),
say ΔKL.

Let y+ denote a hypothetical future set of data, which is generated from
f ( y | θo, Xo) but is independent of y. The expected K–L discrepancy is given by

ΔKL = E∗+
{
−2l

(
θ̂

∣∣∣ y+, X
)}

(3)

= E∗
{
E+

[−2l
(
θ

∣∣ y+, X
)]∣∣

θ=θ̂

}
. (4)

In (3), E∗+ denotes the expectation under the joint distribution of ( y, y+). In (4), the
inner expectation E+ is taken under the distribution of y+, and the outer expectation
E∗ is taken under the distribution of y.

Now consider writing ΔKL as

ΔKL=E∗
{
−2l

(
θ̂

∣∣∣ y, X
)}

+E∗
{
E+

[−2l (θ ∣∣ y+, X
)]∣∣

θ=θ̂
−

[
−2l

(
θ̂

∣∣∣ y, X
)]}

.

(5)

The statistic −2l
(
θ̂

∣∣∣ y, X
)
is an unbiased estimator of E∗

{
−2l

(
θ̂

∣∣∣ y, X
)}

. In

practice, −2l
(
θ̂

∣∣∣ y, X
)
reflects the conformity of the fitted model to the data y, and

therefore measures goodness-of-fit. For linear models, we have

−2l
(
θ

∣∣ y+, X
) = n log σ̂ 2+‖ y+−Xβ̂‖2/σ̂ 2 and −2l

(
θ̂

∣∣∣ y, X
)

= n log σ̂ 2+n.

Therefore, for linear models, the K–L discrepancy can be expressed as

ΔKL = E∗
{
n log σ̂ 2 + n

}
+ E∗+

⎧⎪⎨
⎪⎩

∥∥∥ y+ − Xβ̂

∥∥∥
2

σ̂ 2 − n

⎫⎪⎬
⎪⎭

. (6)
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By writing ΔKL in the form of (5), we see that we can use −2l
(
θ̂

∣∣∣ y, X
)
as a

platform for approximating ΔKL. The corresponding bias is given by

B = E∗
{
E+

[−2l
(
θ

∣∣ y+, X
)] ∣∣

θ=θ̂
−

[
−2l

(
θ̂

∣∣∣ y, X
)]}

.

Efron (1983, 1986) refers to B as the expected optimism. The difference B is positive,
since it compensates for the fact that the goodness-of-fit term has a lower value for
the data y from which θ̂ is obtained, than for the future data y+.

Our goal is to find information criteria that precisely estimate the K–L discrepancy.
If we have a reasonable estimator B̂ for the expected optimism B, an estimator ofΔKL
could be constructed as

− 2l
(
θ̂

∣∣∣ y, X
)

+ B̂. (7)

In the case of linear models, (7) reduces to

n log σ̂ 2 + n + B̂.

Akaike (1973, 1974) demonstrates that B can often be asymptotically approximated
by 2(p + 1), where (p + 1) is the dimension of f ( y | θ , X). More specifically, if
the following two assumptions hold, 2(p + 1) serves as an asymptotically unbiased
estimator of the expected optimism.

(a) The generating model f ( y | θo, Xo) is a member of the candidate class
{ f ( y | θ , X) | θ ∈ Θ},whereΘ denotes the (p+1)-dimensional parameter space.
Thus, the candidate model f ( y | θ , X) is correctly specified or overspecified.

(b) An appropriate set of regularity conditions hold so that the traditional asymptotic
properties of the ML estimator θ̂ are ensured.

Under assumptions (a) and (b), an asymptotically unbiased estimator of ΔKL is
provided by AIC:

AIC = −2l
(
θ̂

∣∣∣ y, X
)

+ 2(p + 1).

As a consequence of (a) and (b), AIC works very well for many model selec-
tion applications provided that the sample size is large. It tends to select a model

f
(
y

∣∣∣ θ̂ , X
)
that minimizes the mean squared error of prediction (Shibata 1981).

One drawback of AIC is noted by Sugiura (1978), and later by Hurvich and Tsai
(1989). In settings where the sample size n is relatively small compared to the dimen-
sion (p+1), AIC has a potentially high degree of negative bias. This bias usually leads
to severe overfitting. For correctly specified or overspecified normal linear models, the
aforementioned authors derive an exactly unbiased estimator of B, which is

B = E∗+

⎧⎪⎨
⎪⎩

∥∥∥ y+ − Xβ̂

∥∥∥
2

σ̂ 2 − n

⎫⎪⎬
⎪⎭

= 2(p + 1)n

n − p − 2
. (8)
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They refer to their criterion as “corrected” AIC, AICc:

AICc = −2l
(
θ̂

∣∣∣ y, X
)

+ 2(p + 1)n

n − p − 2
.

The penalty term of AICc provides a more accurate estimator of the expected opti-
mism than AIC. Through small-sample simulation studies, Hurvich and Tsai (1989)
convincingly demonstrate that AICc outperforms AIC at selecting the correct model.

The penalty terms of AIC and AICc are needed to correct for the bias represented
by the expected optimism. In Sect. 3, we will demonstrate that for best-subset model
selection, these penalizations do not adequately approximate the expected optimism.
However, we will first introduce another criterion AICi , which serves as one of the
fundamental tools in devising our best-subset selection procedure.

Improved AIC, or AICi , first proposed by Hurvich et al. (1990), is based on the
following motivation. As an estimator of the K–L discrepancy, AICc is exactly unbi-
ased only in the Gaussian linear modeling framework. In other modeling frameworks,
the exact unbiasedness property of AICc does not hold. However, under the assump-
tion that the candidate model is either correctly specified or overspecified, it may be
argued that the expected optimism only loosely depends on the generating model.
The derivation of AIC implies that in large-sample settings, the expected optimism
is approximated by 2(p + 1), a term that does not involve the characteristics of the
generating model. For relatively small samples, as evidenced by simulation studies,
the expected optimism only weakly depends on the generating model.

Based on these findings, Hurvich et al. (1990) andBengtsson andCavanaugh (2006)
argue that the expected optimism can be accurately approximated by Monte Carlo
simulation, using an arbitrary but convenient choice of a surrogate model in place of
the true model, such as the null model. This Monte Carlo approximation is valid as
long as the candidate model is either correctly specified or overspecified.

The structure of AICi can be outlined as follows. Let y(1), y(2), . . . , y(M) denote
M fitting samples generated as i.i.d. under the nullmodel, and let θ̂(1), θ̂(2), . . . , θ̂(M)

represent the corresponding parameter estimators for each sample. Also, let
y+(1), y+(2), . . . , y+(M) denote M validation or future samples, additionally gen-
erated as i.i.d. under the null model. AICi is defined as

AICi = −2l
(
θ̂

∣∣∣ y, X
)
+ 1

M

M∑
j=1

{[
−2l

(
y+( j) | θ̂( j)

)]
−

[
−2l

(
y( j) | θ̂( j)

)]}
.

Note that −2l
(
θ̂

∣∣∣ y, X
)
again serves as the goodness-of-fit term. As indicated by

the structure of AICi , the criterion shares the same goodness-of-fit term as AIC and
AICc, yet involves a penalty term derived from Monte Carlo simulation. Using simu-
lation to characterize model complexity is a flexible approach that can be adapted
to accommodate various modeling settings, including the setting for best-subset
regression.

3 The best-subset model selection framework

A common problem that arises inmany analyses is the selection of a best-subset model
from the entire collection of candidate models based on APS of regressor variables.
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Let X P denote an n × P design matrix of full column rank that includes all (P − 1)
possible regressor variables. Consider a subset candidate model with design matrix X ,
f ( y | θ , X), where X is an n × p design matrix of full column rank. Here, (p − 1)
denotes the number of regressors in X P that are included in X . In total, there are
2(P−1) possible subsets of the regressors represented in X P , and each of these subsets
could be used to construct a candidate model. Best-subset model selection proceeds
by searching among these 2(P−1) candidate models and finding the best fit according
to some criterion.

As previously mentioned, in the normal linear modeling framework when the can-
didate model of interest is correctly specified or overspecified, AICc is an unbiased
estimator of the K–L discrepancy. However, for best-subset selection, AICc is biased.
Thus, AICc alone is an inappropriate criterion in this setting.

To explain this bias, we will first provide an illustrative example. In this example,
we consider the use of order statistics to estimate the mean of a series of random
variables. Suppose we have a collection of random variables y1, y2, . . . , yn with a
commonmean: E(yi ) = μ, for i = 1, 2, . . . , n. Each of these random variables serves
as an unbiased estimator of μ. However, the minimum of these random variables is a
biased estimator of μ, because the expectation of the minimum order statistic is less
than μ. Moreover, the size of the bias depends on n. Thus, the bias becomes more
prominent as n increases.

In best-subsetmodel selection, the problemof estimating theK–Ldiscrepancy could
be viewed as analogous to the preceding problem. Suppose for a particular subset size,
several candidate models are overspecified. We will demonstrate in Proposition 1 that
the K–L discrepancies of these models are all equal. The AICc for each of these
overfitted models provides an unbiased estimator of the common K–L discrepancy.
However, if we focus on the fitted model corresponding to the minimum AICc, then
this minimum AICc is biased for the common K–L discrepancy. The bias is again
caused by the ordering of the AICc values (or equivalently, the goodness-of-fit terms).
As the number of overspecified models grows, the difference increases between the
expectation of the minimum AICc and the common K–L discrepancy.

In relating the problem of estimating a common K–L discrepancy using the min-
imum AICc to the problem of estimating a common mean using the minimum order
statistic, we note that the latter development is typically based on a simplistic setting
where the variates are assumed independent. For dependent variates, the bias of the
minimum order statistic is not only governed by the size of the sample, but also by
the nature of the dependence among the variates (see, for instance, Maurer and Mar-
golin 1976). For overspecified models of a particular subset size, the AICc values will
obviously be dependent, since they are all based on empirical log-likelihoods arising
from the same response data. Nonetheless, the analogy to conventional order statistics
is helpful in conceptualizing how bias arises in best-subset model selection.

Now suppose that a large number of candidate models exist for a subfamily of a
certain subset size, and that in turn, these models comprise a substantial proportion of
all the candidate models. Potentially, there is a high likelihood of choosing a model
from this subfamily, regardless of whether the generating model is a member of this
subfamily. To avoid this problem,model selection criteria should penalizemore heavily
for a subset size that represents a large number of candidatemodels. In other words, for
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a particular subset size, the magnitude of the penalization should be positively related
to the number of models. With AICc, note that the penalty term is merely based on
n and p, and does not depend on the number of models of size s. Thus, AICc is an
inappropriate criterion for best-subset selection.

In this work, we used R (R Core Team, version 2.15.3) to perform simulations. The
R package leaps (Lumley 2009) was applied to find the best model for each subset size.
Implemented by the branch-and-bound algorithm, the leaps package was first utilized
in subset selection by Beale et al. (1967), and later by Hocking and Leslie (1967) and
LaMotte and Hocking (1970). This preceding algorithm is feasible on modern PCs
when the largest model size S is not too large: e.g., S < 20. We emphasize that best-
subset selection is computationally expensive. For every additional regressor variable
included for analyses, the computational cost will roughly double.

4 AICi in best-subset model selection

For best-subset model selection, our goal is to find a criterion that can accurately
estimate theK–Ldiscrepancy.Oncewe have such a criterion, a selection procedure can
be proposed that effectively utilizes this statistic. Yet before developing the criterion,
we will need to answer an important question: i.e., what type of model should serve
as the target for the estimation of the K–L discrepancy?

Consider a candidate subset of shared dimension that contains multiple overspec-
ified models. The following proposition demonstrates that these models share the
same K–L discrepancy. Thus, the estimation of the common K–L discrepancy could
be based on any of the overspecified models. The proof of the proposition appears in
the appendix.

Proposition 1 Assume data y is generated from a linear model y = Xoβo + εo,
where Xo is an n × po design matrix with full column rank, and εo ∼ N (0, σ 2

o I). Let
C(Xo) denote the column space of Xo. Suppose two overspecified candidate models
are given by y = X1β1 + ε1, with ε1 ∼ N (0, σ 2

1 I), and y = X2β2 + ε2, with
ε2 ∼ N (0, σ 2

2 I). Here, X1 and X2 are both n × p matrices with full column rank,
and po < p. Since both candidate models are overspecified, C(Xo) ⊆ C(X1) and
C(Xo) ⊆ C(X2). Let ΔKL(1) and ΔKL(2) denote the K–L discrepancies of the two
candidate models. Then we have ΔKL(1) = ΔKL(2).

In practice, although the K–L discrepancies are identical for overspecified models
of a common dimension, the realized values of amodel selection criterion such asAICc

will vary. We tend to favor the model with the minimum sum of squared errors (SSE),
because for a certain subset size, the minimum SSEmodel provides the best goodness-
of-fit. Unfortunately, as we have previously discussed, AICc for the minimum SSE
model is negatively biased for the K–L discrepancy.

We are now in a position to answer the question raised earlier in this section: i.e.,
what typeofmodel should serve as the target for the estimationof theK–Ldiscrepancy?
We define a representative sufficient model, or simply a representative model, as any
model within a collection of a certain size that contains all the variables in the true
model. A comparison of K–L discrepancies among the representative models from
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different subset sizes would help us to decide the best subset size. For a certain subset
size, Proposition 1 demonstrates that all the representative models have the same K–L
discrepancy. For this reason, if we use AICc for the minimum SSE model to estimate
this common K–L discrepancy, the estimate will be biased. Moreover, the bias will
increase in accordance with the number of representative models.

To address this problem, we will use the idea behind AICi to derive an appropriate

estimator of the K–L discrepancy for a representative model. Let θ̂r = (β̂
T
r , σ̂ 2

r )T

denote the ML estimator for a representative model, and let ΔKL(r) denote the corre-
sponding K–L discrepancy. In reference to (6) and (8), we have

ΔKL(r) = E∗+
[
−2l

(
θ̂r | y+, Xr

)]

= E∗
{
n log σ̂ 2

r + n
}

+ E∗+

⎧
⎪⎨
⎪⎩

∥∥∥ y+ − Xr β̂r

∥∥∥
2

σ̂ 2
r

− n

⎫
⎪⎬
⎪⎭

= E∗
{
n log σ̂ 2

r + n
}

+ 2(p + 1)n

n − p − 2
.

Also, let θ̂min =
(
β̂
T
min, σ̂

2
min

)T
denote the ML estimator for the minimum SSE

model, and let −2l
(
θ̂min | y, Xmin

)
denote the corresponding goodness-of-fit term.

Suppose we use −2l
(
θ̂min | y, Xmin

)
in the estimation of ΔKL(r). The bias B is then

given by

B = ΔKL(r) − E∗
{
−2l

(
θ̂min | y, Xmin

)}

= E∗
{
n log σ̂ 2

r + n
}

+ 2(p + 1)n

n − p − 2
− E∗

{
n log σ̂ 2

min + n
}

= E∗

{
n log

σ̂ 2
r

σ̂ 2
min

}
+ 2(p + 1)n

n − p − 2
.

For candidate models that are overspecified, the preceding expectation in B could
be approximated through Monte Carlo simulation, based on the idea behind AICi . By
substituting E∗ with an estimator Ê∗, obtained through Monte Carlo simulation based
on the null model, we have

B̂ = Ê∗

{
n log

σ̂ 2
r

σ̂ 2
min

}
+ 2(p + 1)n

n − p − 2

= 1

M

M∑
j=1

n log
σ̂ 2
r ( j)

σ̂ 2
min( j)

+ 2(p + 1)n

n − p − 2
. (9)

Specifically, let y(1), y(2), . . . , y(M) be M vectors of data generated i.i.d. from
N (0, I). Thus, we employ a null model as a surrogate for the true model (1), where
βo is 0 and σ 2

o is one. The justification of AICi ensures that B̂ accurately estimates the
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bias B regardless of the parameter specification for the surrogate model, provided that
the fitted candidate model is either correctly specified or overspecified. We choose the
N (0, I) surrogate model merely for convenience.

For each subset size, σ̂ 2
r ( j) and σ̂ 2

min( j) are the ML estimators of error variance
corresponding to the representative model and the minimum SSE model, respectively.

In the best-subset setting, AICi can therefore be defined as

AICi =
{
n log σ̂ 2 + n

}
+ B̂

=
{
n log σ̂ 2 + n

}
+

⎧
⎨
⎩

1

M

M∑
j=1

n log
σ̂ 2
r ( j)

σ̂ 2
min( j)

+ 2(p + 1)n

n − p − 2

⎫
⎬
⎭ (10)

= n log σ̂ 2 + 1

M

M∑
j=1

n log
σ̂ 2
r ( j)

σ̂ 2
min( j)

+ n(n + p)

n − p − 2
, (11)

where σ̂ 2 is the ML estimator of error variance corresponding to the candidate model
of interest.

For a certain subset size, AICi measures the proximity of a representative model to
the underlying true model, in terms of the K–L discrepancy. As evident from (10), in
addition to the penalty term in AICc, AICi has an extra penalty,

1

M

M∑
j=1

n log
σ̂ 2
r ( j)

σ̂ 2
min( j)

,

that accounts for the bias caused by best-subset selection. One appealing aspect of this
penalty term can be attributed to its generation based on the null model. Consequently,
this term is independent of the true model f ( y | θo, Xo), and is therefore independent
of the goodness-of-fit term n log σ̂ 2. For convenience, we can construct a table that
lists the simulated penalties corresponding to various combinations of n and p. By
looking up the penalty terms from such a table, AICi could be computed as readily as
other standard model selection criteria, such as AIC and AICc.

In order to provide a quantitative illustration of the differences among the criteria,
Table 1 presents the penalty terms employed by AIC, AICc, and AICi . In this example,
we consider orders from 0 to 10, and a sample size of n = 100. Note that order refers
to the number of candidate regressor variables (i.e., (p − 1)). In Table 1, the penalty
term is 2(p+ 1) in AIC and [2(p+ 1)n]/(n− p− 2) in AICc. Through all the orders,
AICc always provides larger penalties than AIC, which reflects AICc’s correction for
AIC’s bias in small samples. In AICi , the penalty term is evaluated from (9) over 1000
simulated samples. As shown in Table 1, when the order is 0 or 10, the penalty term of
AICi is exactly equal to that of AICc. Since for each of these subset sizes, the intercept-
only model or the full model is the only candidate model, the bias issue that arises in
best-subset selection becomes moot. When the order is neither 0 nor 10, the penalty
term of AICi is always larger than that of AICc. The magnitudes of the difference are
most significant for orders 4, 5, and 6. Among these orders, the numbers of candidate
models are considerable, which leads to pronounced bias corrections for AICi .
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Table 1 Penalty terms of AIC,
AICc , and AICi : n = 100

Order AIC AICc AICi

0 4 4.12 4.12

1 6 6.25 9.12

2 8 8.42 12.58

3 10 10.64 15.32

4 12 12.90 17.62

5 14 15.22 19.62

6 16 17.58 21.41

7 18 20.00 23.05

8 20 22.47 24.60

9 22 25.00 26.10

10 24 27.59 27.59

5 The multistage model selection procedure AICaps

In best-subset selection, for a candidate subfamily of a certain size, we tend to focus
on the fitted model corresponding to the minimum SSE. The following proposition
indicates that, for a given size, a representative model’s K–L discrepancy is smaller
than that of an underspecified model. Thus, a representative model is prone to produce
the minimum SSE. The proof of the proposition appears in the Appendix.

Proposition 2 Assume data y is generated from a linearmodel y = Xoβo+εo, where
Xo is an n× po design matrix with full column rank, and εo ∼ N (0, σ 2

o I). Suppose a
correctly specified or overspecified candidate model (1) is given by y = X1β1 + ε1,
with ε1 ∼ N (0, σ 2

1 I), and an underspecified candidate model (2) is given by y =
X2β2 + ε2, with ε2 ∼ N (0, σ 2

2 I). Here, X1 and X2 are both n × p matrices with
full column rank, and po ≤ p. Since model (1) is correctly specified or overspecified,
C(Xo) ⊆ C(X1); and since model (2) is underspecified, C(Xo) � C(X2). Let
ΔKL(1) and ΔKL(2) denote the K–L discrepancies of the two candidate models. Also,
let Δ̄KL(1) = ΔKL(1)/n and Δ̄KL(2) = ΔKL(2)/n denote themeanK–Ldiscrepancies
of the two models. Then as n → ∞, Δ̄KL(1) − Δ̄KL(2) → C, where C < 0.

Proposition 2 demonstrates that for a certain subset size, a representative model
tends to be the minimum SSE model. The remaining problem is to use an appropriate
criterion to estimate a representative model’s K–L discrepancy. In the preceding sec-
tion, we propose a criterion AICi to estimate this measure. AICi is most appropriate
for the setting where several representative models exist within a certain subset size.
However, if the generating model is the only representative model for a subset size,
AICc actually outperforms AICi in terms of approximating the K–L discrepancy. In
this case, the minimum SSE model should be the correctly specified model, and all
the other models should be underspecified. Since these underspecified models have
different K–L discrepancies that should exceed the K–L discrepancy for the correctly
specified model, no bias is induced by using the minimum order statistic to estimate
a common target based on multiple representative models.
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Figure 1 displays the patterns of AIC, AICc, and AICi as estimators of the K–L
discrepancy. In this example, we first consider models with nested design matrices
comprised of the firstm regressors of X , form = 1, . . . , 10. Among these models, the
generating model has order 3. Thus, the model of order 3 is correctly specified, and the
models of order >3 are overspecified. Since the true parameters are known, the K–L
discrepancies for these 10 models can be computed. We then consider APS models
in the candidate family, and compute criterion values for the minimum SSE model of
each subset size. Figure 1 plots the average K–L discrepancies, and the average values
of AIC, AICc and AICi over 1000 simulations.

One should expect that the K–L discrepancy achieves its minimum at order 3. At
order 3, AICc is closer to the K–L discrepancy than AICi . For this order, AICc is an
approximately unbiased estimator of the K–L discrepancy, whereas AICi is positively
biased. When the penalty term of AICi is simulated from the null model, we assume
all the candidate models are overspecified. However, at order 3, no candidate model
is overspecified. Thus, the penalty of AICi induces a positive bias.

When the order is larger than 3, AICi is generally closer to the K–L discrepancy
than AICc. As evident from the figure, AICi tracks the K–L discrepancy curve very
closely. Thus, AICi can estimate the K–L discrepancy with the least amount of bias. In
contrast, AICc tends to underestimate the K–L discrepancy for subfamilies featuring
overspecified models, even though the underestimation is less prominent than that
exhibited by AIC. Therefore, it is more appropriate to use AICi in estimating the K–L
discrepancy for subfamilies with overspecified models.

An important conclusion derived from Fig. 1 can be summarized as follows. When
there are several representative models in the subfamily, AICi is an approximately
unbiased estimator of the K–L discrepancy, and AICc is negatively biased. On the
other hand, when the generating model is the only representative model in the sub-
family, AICc is an approximately unbiased estimator of the K–L discrepancy, and
AICi is positively biased. In this setting, the generating model should correspond to
the minimum SSE model, and all other models should be underspecified.

Clearly, for both AICc and AICi , specific settings exist where one of the two criteria
provides a more accurate approximation to the K–L discrepancy and exhibits less bias.
In order to combine the strengths of the two criteria, we propose a multistage selection
procedure, AICaps. Unlike conventional stepwise procedures, our method considers
APS of regressors, and therefore constitutes an exhaustive search.

Under the assumption that one of the candidate models (of orders 1 through S) is
correctly specified, a description of the procedure AICaps is as follows.

Step 1: The true model is either the minimum SSE model of order 1, or some
other model of order>1. Compare AICc for the minimum SSEmodel of
order 1, to the AICi for all the models of order >1. If there is any model
of order >1 that has AICi smaller than AICc for the order 1 model, go
to step 2. Otherwise select the minimum SSE model of order 1.

Step 2: At this stage, we assume the true model is either the minimum SSE
model of order 2, or some other model of order >2. Compare AICc for
the minimum SSE model of order 2, to the AICi for all the models of
order >2. If there is any model of order >2 that has AICi smaller than
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Fig. 1 Average K–L discrepancy for representative models (p ≥ 3), and criterion values for minimum
SSE models: true order = 3 and n = 100

AICc for the order 2 model, go to step 3. Otherwise select the minimum
SSE model of order 2.

...

Step S − 1: At this stage, we assume the truemodel is either theminimumSSEmodel
of order S − 1, or the full model of order S. Among these two models,
select the model with the smallest AICc.

This multistage process is illustrated by Fig. 2.
Based on the preceding discussion, if the generating model is a member of subset

size s, our multistage procedure, AICaps, is expected to stop at step s. Before step s, we
are essentially comparing AICc for underspecified models to AICi for representative
models. With these two types of models, the representative models usually produce
much lower criterion values. Thus, the procedure should proceed to the next step.
When the procedure arrives at step s, we are comparing AICc for the correctly spec-
ified model to AICi for overspecified models. At this stage, based on the properties
of AICc and AICi , both of these criteria should accurately estimate their correspond-
ing K–L discrepancies. Thus, subtle differences among the discrepancy measures
can be identified, which should, in principle, lead to the identification of the correct
model.

Our proposed algorithm is designed as a refinement of the conventional best-subsets
selection procedure based on a traditional model selection criterion such as AIC or
AICc. In the usual procedure, for each candidate subfamily of a certain order, ranging
from 1 to S, the smallest SSE model is identified. These S models are then compared
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Step 1: The true model is either the 
minimum SSE model of s=1, or some 
other model of s>1. 

Compare AICc (s=1) to AICi (s>1) 

Select the minimum 
SSE model of order 1

Any AICi (s>1) is smaller

AICc (s=1) is smaller  

Step 2: The true model is either the 
minimum SSE model of s=2, or some 
other model of s>2. 

Compare AICc (s=2) to AICi (s>2) 

Step S-1: Compare AICc (s=S-1) to AICc (s=S) 

Select the minimum 
SSE model of order 2

AICc (s=2) is smaller  

Any AICi (s>2) is smaller

… …

Select the model with 
the smallest AICc

Fig. 2 Multistage process of AICaps

using the values of the criterion, which penalize for complexity, and the model corre-
sponding to the smallest value is selected. Our algorithm also focuses on the minimum
SSE models, yet adaptively compares AICc and AICi values, so as to minimize the
bias that would result from using either criterion exclusively.

6 Simulation study

In our simulation study, we compare the performances of different model selection
methods. The selection methods under consideration include (1) AIC; (2) AICc; (3)
AICi ; (4) BIC; (5) AICaps. Our study is comprised of three collections of simulation
sets. For each collection, we compile 10 simulation sets based on 1000 replications
(i.e., samples), where each set is characterized by the order of the generating model.
Here, order refers to the number of regressor variables in themodel. For each generated
sample, the first step is to construct an n × 10 full design matrix X , where n denotes
the sample size. Every row of X represents the collection of covariates for a particular
subject, generated as i.i.d. replicates from a multivariate normal distribution with
mean vector 0 and identity covariance matrix. The columns of X can be written as
[x1, . . . , x10], with the corresponding 10 × 1 coefficient vector β = (β1, . . . , β10)

T .
In simulation set m (m ∈ {1, . . . , 10}), the first m elements of β are set to 1, and the
remaining (10−m) elements are set to 0. Assuming the intercept is 0, the generating
model can then be written as y = Xβ + ε, with ε ∼ N (0, σ 2 I). Based on this
configuration, in simulation set m, only the first m columns of X are involved in the
generation of y.
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The generating models can be presented as follows:

yi = xi1 + εi

yi = xi1 + xi2 + εi

...

yi = xi1 + xi2 + . . . + xi10 + εi , (12)

where the random errors εi are i.i.d. distributed as N (0, σ 2).
Note that the magnitude of εi might obscure the underlying regression surface for

the sample, and thus affect model selection. In order to control the impact of the
generating model error, we will determine σ 2 from the signal-to-noise ratio (SNR).
As defined by Cavanaugh (2004), SNR is “a ratio of two variances: the variance of the
linear form in the regressor variables relative to the variance of the error component.”
SNR can be written as

SNR = var(Xβ)

σ 2

= βT var(X)β

σ 2 .

For linear models, the coefficient of determination, or R2, is a useful measure of
goodness-of-fit. It can be shown that if the correctly specified model is fit to the data,
then R2 is approximately SNR/(1 + SNR). Thus, we can determine σ 2 from R2 by
noting that

σ 2 = βT var(X)β

SNR

≈ βT var(X)β

R2/(1 − R2)
.

Based on the preceding relationship between σ 2, R2, and SNR, we will derive σ 2

for SNR = 9. Therefore, R2 for the correctly specified fitted model is approximately
0.9.

For each collection in our study, recall that we compile 10 simulation sets based
on 1000 replications. We employ a sample size of n = 100 for the first collection,
n = 75 for the second, and n = 50 for the third. Therefore, we can assess the impact
of sample size on model selection.

For each replication, APS of regressors are considered to define the family of
candidate models. After the models are fit to the data, we use model selection methods
to search for the fitted candidate model that provides the best approximation to the
generating model. Note that the consideration of all possible subset models ensures
that one of the candidate models is correctly specified. In other words, the generating
model is a member of the candidate family.
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For every candidate model, we assume the existence of an intercept. Since there are
10 regressor variables, say (x1, . . . , x10), the total number of possible subset models
is 210 = 1024. Let s = 0, 1, . . . , 10 denote the subset size. The number of candidate
models for subset size s is then

(10
s

)
. Note that when the subset size is s = 0, the(10

0

) = 1 candidate model is the intercept-only model. Also, when the subset size is

s = 10, the
(10
10

) = 1 candidate model is the full model. According to our design,
in simulation set m, the generating regressors involve (x1, . . . , xm). Thus, candidate
models that do not contain all the variables (x1, . . . , xm) are underspecified. On the
other hand, candidate models that contain all the variables (x1, . . . , xm) plus some
additional variables are overspecified.

In order to examine the selection behaviors of the different methods, the criterion
values of AIC, AICc, BIC, CIC, and AICi are calculated for every fitted candidate
model, and the model favored by each method is recorded. Our multistage model
selection procedure AICaps selects the best model through adaptively comparing AICc

and AICi .
Over 1000 simulations, the model selection results are displayed in Table 2. Each

row of the table indicates the order of the generating model, and each cell entry shows
the number of times (out of 1000) the correct model is selected by a certain method.

As evident from Table 2, over nearly the entire range of the generating order m,
AICaps obtains more correct selections than either AIC or AICc. When m is small,
say from 1 to 5, the performances of AIC and AICc are very poor, with the criteria
selecting the correct model structure <50% of the time. In contrast, AICaps performs
quite well for all values of m, selecting the correct model structure more than 80% of
the time. We notice that the performances of AIC and AICc are worse whenm is small
as compared to when m is relatively large. This phenomenon indicates that both AIC
and AICc tend to select overspecified models. Whenm is small, most of the candidate
models are overspecified, which increases the risk of overfitting. Whereas for larger
m, the number of overspecified models is reduced, which protects against overfitting.
In fact, when m is between 9 and 10, there is little chance for any of the methods to
select overspecified models; thus, in these sets, the performances of AIC and AICc

are comparable to that of AICaps.
The criterion AICi performs better than AIC and AICc only for small values of m.

As m increases, AICi begins to select overspecified models. As illustrated by Table 1,
for large ordersm, the separation between consecutive penalty terms forAICi becomes
less pronounced. Consequently, AICi tends to favor more complex models, since the
increase in penalization for the more complex models is insufficient to compensate
for the improvement in goodness-of-fit.

Compared to AIC, AICc, and AICi , BIC achieves better selection results due to its
larger penalty term. However, whenm is small, BIC also exhibits a tendency to overfit,
and does not yield results as favorable as AICaps. As m becomes larger, the selection
results for BIC improve, and in some sets, the criterionmarginally outperformsAICaps.

CIC provides acceptable results for small values of m, yet the performance of this
criterion quickly deteriorates as m increases. For m between 4 and 9, CIC obtains
relatively few correct selections.
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Table 2 Frequencies of the
correct model selected by AIC,
AICc , AICi , BIC, CIC, and
AICaps: 1000 replications

Order AIC AICc AICi BIC CIC AICaps

n = 100

1 195 222 496 717 624 820

2 233 276 368 722 392 845

3 279 342 344 766 250 862

4 330 420 313 789 146 873

5 378 461 332 842 98 885

6 461 558 371 849 77 864

7 550 646 448 886 73 848

8 662 746 532 911 92 846

9 819 874 756 965 169 874

10 1000 1000 1000 1000 1000 1000

n = 75

1 186 243 487 669 612 826

2 237 314 429 703 393 855

3 244 330 368 693 226 872

4 302 416 345 730 136 849

5 381 495 357 787 95 887

6 474 602 390 834 84 888

7 511 644 477 852 62 868

8 651 764 613 884 80 853

9 812 880 759 938 181 880

10 1000 1000 1000 1000 1000 1000

n = 50

1 177 244 522 575 612 837

2 207 314 424 591 402 863

3 241 377 391 626 249 878

4 284 474 368 682 161 897

5 338 530 409 705 107 888

6 395 572 477 713 74 873

7 508 732 529 813 64 891

8 619 783 664 833 74 871

9 789 905 824 920 186 903

10 1000 1000 1000 1000 1000 1000

The aforementioned findings are illuminated by Fig. 3, where the average model
orders selected by each of the methods are plotted against the generating orders, for
a sample size of n = 100. The solid line represents the correct orders. As indicated
from Fig. 3, AIC, AICc, and AICi have propensities to select orders higher than the
correct order, and this propensity is most pronounced when the generating order is
small. On the other hand, AICaps outperforms AIC, AICc, and AICi by systematically
tending to select an order which is close to that of the generating model.
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Fig. 3 Average orders selected by each of the criteria: n = 100, 1000 replications

In order to illustrate more detailed selection results, for the special case when the
generating order is 4, Table 3 presents the frequencies of all the orders selected by
each of the methods over the 1000 replications. AIC, AICc, and AICi exhibit strong
tendencies to favor larger models, selecting models of order 5 more often than models
of the correct order 4. The selection pattern for BIC is much more favorable; BIC
shows less of a propensity to include extraneous variables, choosing models of the
correct order 4 more often than the higher orders. AICaps also favors models of the
correct order quite frequently, outperforming BIC and exhibiting more parsimonious
selections.

Our simulation sets are based on small to moderate sample sizes. As the sample
size n is reduced from 100 to 50, the performances of AIC and BIC deteriorate. This
phenomenon could be explained by dependence of these criteria on the large-sample
assumption: AIC is an asymptotically unbiased estimator of the K–L discrepancy,
while BIC is a large-sample approximation to a transformed Bayesian posterior prob-
ability. When the sample size is not sufficiently large, optimality properties based on
asymptotic justifications may fail to hold. In particular, AIC is unable to approximate
the K–L discrepancy accurately, and thus cannot provide meaningful comparisons
between the fitted candidate models. Also, although BIC is a consistent criterion, BIC
does not tend to choose the correctly specified model, despite the inclusion of the
true model in the candidate family. On the other hand, AICc is designed as an exactly
unbiased estimator of the K–L discrepancy; thus, its performance is not substantially
affected by the reduction of the sample size. The penalty term of AICc is employed
as part of the penalization for AICi , which protects the method from the deleterious
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Table 3 Frequencies of the
model orders selected by AIC,
AICc , AICi , BIC, CIC, and
AICaps: true order = 4, 1000
replications

Order AIC AICc AICi BIC CIC AICaps

n = 100

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 324 411 318 803 150 869

5 382 378 328 169 128 112

6 219 173 230 27 130 19

7 63 32 94 1 114 0

8 12 6 26 0 108 0

9 0 0 4 0 157 0

10 0 0 0 0 213 0

n = 75

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 279 397 304 748 118 873

5 380 390 333 211 146 112

6 244 175 245 35 102 8

7 75 30 84 3 103 4

8 17 7 24 3 137 3

9 5 1 10 0 134 0

10 0 0 0 0 260 0

n = 50

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 274 452 389 678 149 885

5 373 371 340 252 159 100

6 244 145 177 63 105 10

7 81 29 78 6 111 3

8 20 3 14 1 111 0

9 8 0 2 0 132 0

10 0 0 0 0 233 0

impact of a small sample. As a result, in nearly all of the simulation sets, the multi-
stage procedure AICaps outperforms the remaining other criteria by choosing a model
of correct structure most frequently.

7 Discussion

We have proposed a multistage model selection procedure for best-subset selection in
the linearmodeling framework. Our algorithm is developed using estimates of theK–L
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discrepancy for representative models, which include both the correctly specified and
overspecifiedmodels. ForK–L discrepancy estimation, we argue it ismore appropriate
to useAICc for a correctly specifiedmodel, andAICi for overspecifiedmodels. In order
to combine the strengths of these criteria, we devise a multistage selection procedure
AICaps through adaptively comparing the criterion values of AICc and AICi . Our
simulation results show that our procedure performs well in terms of selecting the
correct model structure.

The conventional approach to best-subset selection amounts to choosing the fitted
model among the entire candidate collection that minimizes a traditional criterion
such as AIC or BIC. The problem of overfitting is endemic to this approach. The
success of our algorithm results from reducing this propensity, by appropriately utiliz-
ing the properties of AICc and AICi in a manner suggested by the theoretical results
established in Propositions 1 and 2. Note that Proposition 2 indicates that the K–L
discrepancy can effectively delineate underspecified models from correctly specified
and overspecified models, at least asymptotically. This notion is crucial to the concep-
tual development of our procedure. In small-sample settings where the SNR is weak,
underfitting might be as problematic as overfitting. The behavior of AICaps in such
settings merits further investigation.

Model selection procedures are often characterized by their asymptotic behaviors.
BIC is consistent whereas the AIC family of criteria is asymptotically efficient in the
sense of Shibata (1981). Assuming that the generating model is represented in the
collection of candidate models, a consistent criterion will asymptotically select the
fitted model having the correct structure with probability one. On the other hand,
assuming that the generating model lies outside the collection of candidate models,
an asymptotically efficient criterion will asymptotically select the fitted model that
minimizes the mean squared error of prediction. Asymptotically efficient criteria have
a tendency to choose overspecified models, even in large-sample applications. This
problem is exacerbated in best-subset selection, especially in to small to moderate
sample size settings. Although our multistage procedure is based on an adaptive uti-
lization of AICc and AICi , it substantially reduces the overfitting propensity of using
AIC, AICc, or AICi individually for best-subset selection. In this sense, it exhibits
selection behaviors typically associated with a consistent criterion, such as BIC, in
large-sample applications.

Although our procedure effectively addresses the overfitting problem that arises
in best-subset selection, further improvements and refinements of the algorithm may
warrant investigation. For instance, the penalty termofAICi is simulated assuming that
all candidatemodels of a particular size are overspecified; i.e., that all candidatemodels
are representative. As suggested by a referee, at any particular stage, the minimum
AICc model could be used to identify a necessary (yet perhaps not sufficient) subset
of regressors. The subset could then be used to determine which larger models might
be representative and which might be underspecified. Such a delineation would allow
for a refinement of the AICi penalty term based on a smaller number of representative
models.

In future work, we hope to explore such refinements. We also hope to theoretically
investigate the large-sample optimality of our selection procedure. Finally, we plan to
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extend our methodology to the framework of generalized linear models (GLMs), in
order to account for a broader array of modeling problems.
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Appendix

Proof of Proposition 1

We will follow the derivation of AICc in Davison (2003, pp. 402–403). Consider
writing the K–L discrepancy of the first candidate model as

ΔKL(1) = E∗+
{
−2l

(
β̂1, σ̂

2
1

∣∣ y+, X1

)}

= E∗
{
n log σ̂ 2

1 + n
}

+ E∗+

⎧
⎪⎨
⎪⎩

∥∥∥ y+ − X1β̂1

∥∥∥
2

σ̂ 2
1

− n

⎫
⎪⎬
⎪⎭

. (13)

We will demonstrate the two terms that appear in (13) are equal for both candidate
models.

For the first term E∗
{
n log σ̂ 2

1 + n
}
, E∗ corresponds to the expectation under the

distribution of y. We have

E∗
{
n log σ̂ 2

1 + n
}

= nE∗
{
log σ̂ 2

1

}
+ n

= nE∗
{
log

(
SSE1

n

)}
+ n

= nE∗ {log SSE1} − n log n + n.

From McQuarrie and Tsai (1998, p. 67),

E∗ {log SSE1} = log σ 2
o + log 2 + ψ

(
n − p

2

)
, (14)

where ψ denotes Euler’s psi function, which has no closed-form solution. Equation
(14) indicates E∗ {log SSE1} only depends on σ 2

o , n, and p. Since the two candidate
models have the same dimension,

E∗ {log SSE1} = E∗ {log SSE2} .

Therefore,
E∗

{
n log σ̂ 2

1 + n
}

= E∗
{
n log σ̂ 2

2 + n
}

. (15)
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Next, let us consider the second term in (13), E∗+{‖ y+ − X1β̂1‖2/σ̂ 2
1 − n}, where

E∗+ corresponds to the expectation under the joint distribution of y and y+. It can be
argued that

∥∥∥ y+ − X1β̂1

∥∥∥
2
and σ̂ 2

1 are independent. Thus,

E∗+

⎧
⎪⎨
⎪⎩

∥∥∥ y+ − X1β̂1

∥∥∥
2

σ̂ 2
1

− n

⎫
⎪⎬
⎪⎭

=
E∗+

{∥∥∥ y+ − X1β̂1

∥∥∥
2
}

E∗
{
σ̂ 2
1

} − n. (16)

Further, it can be shown that E∗+
{∥∥∥ y+ − X1β̂1

∥∥∥
2
}

= σ 2
o (n + p). Since nσ̂ 2

1 ∼
σ 2
o χ2

n−p, we have

E∗

{
1

σ̂ 2
1

}
= n

σ 2
o (n − p − 2)

.

It follows that (16) can be derived as

E∗+

⎧⎪⎨
⎪⎩

∥∥∥ y+ − X1β̂1

∥∥∥
2

σ̂ 2
1

− n

⎫⎪⎬
⎪⎭

= 2(p + 1)n

n − p − 2
, (17)

which is the penalty term of AICc. Since the column ranks of X1 and X2 are both p,

E∗+

⎧⎪⎨
⎪⎩

∥∥∥ y+ − X1β̂1

∥∥∥
2

σ̂ 2
1

− n

⎫⎪⎬
⎪⎭

= E∗+

⎧⎪⎨
⎪⎩

∥∥∥ y+ − X2β̂2

∥∥∥
2

σ̂ 2
2

− n

⎫⎪⎬
⎪⎭

. (18)

Combining (15) and (18), we see that ΔKL(1) = ΔKL(2). �

Proof of Proposition 2

The proof of Proposition 2 requires the following lemma, which is presented without
proof.

Lemma 1 Suppose un and vn are sequences of randomvariables such that as n → ∞,
un−E(un) = op(1) and vn−E(vn) = op(1). Then, based on the continuous mapping
theorem, as n → ∞,

E

(
un
vn

)
= E(un)

E(vn)
+ o(1).

To prove Proposition 2,Wewill follow the notation fromMcQuarrie and Tsai (1998,
Chapter 2). Based on Hurvich and Tsai (1989), the mean K–L discrepancies of the
two candidate models can be expressed as
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Δ̄KL(1) = E∗

{
log σ̂ 2

1 + σ 2
o

σ̂ 2
1

+ ‖Xoβo − X1β̂1‖2/n
σ̂ 2
1

}
,

Δ̄KL(2) = E∗

{
log σ̂ 2

2 + σ 2
o

σ̂ 2
2

+ ‖Xoβo − X2β̂2‖2/n
σ̂ 2
2

}
.

Thus,

Δ̄KL(1) − Δ̄KL(2)

= E∗

{
log

σ̂ 2
1

σ̂ 2
2

+ σ 2
o + ‖Xoβo − X1β̂1‖2/n

σ̂ 2
1

− σ 2
o + ‖Xoβo − X2β̂2‖2/n

σ̂ 2
2

}
.

(19)

Consider the three terms that appear in the expectation in (19). We will show that
the first term is negative, the second term converges to 1, and the third term converges
to −1.

The first term log
(
σ̂ 2
1 /σ̂ 2

2

)
can be written as log(SSE1/n) − log(SSE2/n). To

evaluate this difference, we will need the expectation of SSE for both model (1) and
model (2). Since model (1) is correctly specified or overspecified, it can be shown
that,

E∗ {log(SSE1/n)} = log σ 2
o + log 2 − log n + ψ

(
n − p

2

)
, (20)

where ψ is Euler’s psi function (McQuarrie and Tsai 1998, p. 67). The psi function
has a useful recursive property, such that ψ(v + 1) = ψ(v) + 1/v, for v > 0. Since
model (2) is underspecified, SSE2/σ

2
o follows a noncentral χ2(n− p, λ) distribution,

where the noncentrality parameter λ = E( y′)(I − X(X ′
2X2)X ′

2)E( y)/σ 2
o . It can be

shown that

E∗ {log(SSE2/n)} = log σ 2
o +log 2−log n+

∞∑
r=0

e−λ/2 (λ/2)r

r ! ψ

(
n − p

2
+ r

)
(21)

(McQuarrie and Tsai 1998, p. 47).
Since both model (1) and model (2) have the same dimension p, we can let k =

(n − p)/2 in both (20) and (21). Substitution of (n − p)/2 with k yields

E∗ {log(SSE1/n) − log(SSE2/n)}

= ψ(k) −
∞∑
r=0

e−λ/2 (λ/2)r

r ! ψ (k + r)

=
∞∑
r=0

e−λ/2 (λ/2)r

r ! ψ(k) −
∞∑
r=0

e−λ/2 (λ/2)r

r ! ψ (k + r)

=
∞∑
r=0

e−λ/2 (λ/2)r

r ! (ψ(k) − ψ (k + r)) .
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The preceding derivation uses the property of the Poisson distribution,

∞∑
r=0

e−λ/2 (λ/2)r

r ! = 1.

From the recursive property of the ψ function, we have

ψ(k + r) = ψ(k) + 1

k
+ 1

k + 1
+ · · · + 1

k + r − 1
.

Thus,
E∗ {log(SSE1/n) − log(SSE2/n)} < 0. (22)

Now consider the second term in (19). Since model (1) is correctly specified or
overspecified, as n → ∞,

E∗

⎧⎪⎨
⎪⎩

σ 2
o +

∥∥∥Xβo − X1β̂1

∥∥∥
2
/n

σ̂ 2
1

⎫⎪⎬
⎪⎭

= n + p

n − p − 2

= 1 + p/n

1 − p/n − 2/n

→ 1. (23)

For the last term in (19),

E∗

{
−σ 2

o + ‖Xoβo − X2β̂2‖2/n
σ̂ 2
2

}
,

we will first consider the expectations of the numerator and the denominator, respec-
tively.

Let H2 denote the projection matrix onto the column space of X2; i.e., H2 =
X2(XT

2 X2)
−1XT

2 . For the numerator, we have

E∗{σ 2
o + ‖Xβo − X2β̂2‖2/n}

= σ 2
o + E∗{‖Xβo − X1β̂1‖2}/n

= σ 2
o + σ 2

o tr(H2)/n + (Xoβo − H2Xoβo)
T (Xoβo − H2Xoβo)/n

= σ 2
o (1 + p/n) + (Xoβo)

T (I − H2)(Xoβo)/n.

For the denominator, we have

E∗{σ̂ 2
2 } = 1

n
E∗{ yT (I − H2) y}

= 1

n
{σ 2

o tr(I − H2) + (Xoβo)
T (I − H2)(Xoβo)}
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= σ 2
o (1 − p/n) + (Xoβo)

T (I − H2)(Xoβo)/n.

To combine the expectations of the numerator and the denominator as previously
derived, we apply Lemma 1:

E∗

{
−σ 2

o + ‖Xoβo − X2β̂2‖2/n
σ̂ 2
2

}

= − E∗{σ 2
o + ‖Xoβo − X2β̂2‖2/n}

E∗{σ̂ 2
2 } + o(1)

= −σ 2
o (1 + p/n) + (Xoβo)

T (I − H2)(Xoβo)/n

σ 2
o (1 − p/n) + (Xoβo)

T (I − H2)(Xoβo)/n
+ o(1).

It is generally assumed that (Xoβo)
T (I −H2)(Xoβo) is O(n) (Fujikoshi and Satoh

1997). Thus, as n → ∞,

E∗

{
−σ 2

o + ‖Xoβo − X2β̂2‖2/n
σ̂ 2
2

}
→ −1 (24)

Combining (22), (23), and (24), we see that as n → ∞, Δ̄KL(1) − Δ̄KL(2) → C ,
where C < 0. �
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