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Abstract: Count time series are frequently encountered in biomedical, epidemiological and public 
health applications. In principle, such series may exhibit three distinctive features: overdispersion, 
zero-inflation and temporal correlation. Developing a modelling framework that is sufficiently general 
to accommodate all three of these characteristics poses a challenge. To address this challenge, we 
propose a flexible class of dynamic models in the state-space framework. Certain models that have been 
previously introduced in the literature may be viewed as special cases of this model class. For parameter 
estimation, we devise a Monte Carlo Expectation-Maximization (MCEM) algorithm, where particle 
filtering and particle smoothing methods are employed to approximate the high-dimensional integrals 
in the E-step of the algorithm. To illustrate the proposed methodology, we consider an application 
based on the evaluation of a participatory ergonomics intervention, which is designed to reduce the 
incidence of workplace injuries among a group of hospital cleaners. The data consists of aggregated 
monthly counts of work-related injuries that were reported before and after the intervention. 
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1 Introduction

Time series of counts are frequently encountered in practice (Kedem and Fokianos, 
2002; Fokianos, 2011; Cameron and Trivedi, 2013). Accordingly, the modelling and 
analysis of such data has received considerable attention in the literature. In principle, 
count time series may exhibit three distinctive features: overdispersion, zero-inflation 
and temporal correlation. Developing a modelling framework that is sufficiently 
general to accommodate all three of these characteristics poses a challenge.

In general, time series models can be classified as either observation-driven or 
parameter-driven (Cox, 1981). These two types of models differ in the way they 
account for autocorrelation. With observation-driven models, temporal correlation 
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between adjacent observations is directly characterized as a function of past 
responses. In contrast, with parameter-driven models, an unobserved latent process 
is employed to account for serial correlation. Conditioning on the latent process, the 
observations are assumed to be independently distributed.

Several modelling frameworks have been developed for count time series that 
attempt to account for overdispersion and temporal correlation, based on both the 
observation-driven approach (Zeger and Qaqish, 1988; Davis et al., 2003; Freeland 
and McCabe, 2004; Fokianos et al., 2009; Zhu, 2010) and the parameter-driven 
approach (Zeger, 1988; Oh and Lim, 2001; Chan and Ledolter, 1995; Nelson and 
Leroux, 2006; Davis and Wu, 2009). Recently, a number of frameworks have also 
been proposed to account for zero-inflation (Wang, 2001; Dalrymple et al., 2003; 
Yau et al., 2004; Lee et al., 2005; Jazi et al., 2012; Zhu, 2012; Yang et al., 2013). In  
this article, we provide a unified approach for modelling count time series. Specifi- 
cally, we propose a flexible class of state-space (dynamic) models that simulta- 
neously accounts for autocorrelation, overdispersion and zero-inflation. Certain 
models that have been previously introduced may be viewed as special cases of this 
model class.

With count time series, the response distribution is often markedly non-Gaussian. 
Thus, in the state-space setting, traditional methods based on the Kalman filter and 
Kalman smoother cannot be used for parameter estimation. We therefore resort 
to Monte Carlo methods, and devise a Monte Carlo expectation-maximization 
(MCEM) algorithm based on the particle filter (Gordon et al., 1993) and particle 
smoother (Godsill et al., 2004). Our MCEM algorithm is an extension of the exact 
EM algorithm for linear and Gaussian state-space models (Shumway and Stoffer, 
1982). A similar MCEM algorithm has been proposed by Kim and Stoffer (2008) to 
fit stochastic volatility models.

The paper is organized as follows. In Section 2, we introduce a class of dynamic 
models for zero-inflated count time series in a state-space framework. We outline the 
E-step and M-step of the MCEM algorithm in Section 3. Section 4 contains details 
regarding the particle methods that are used in the E-step of the MCEM algorithm. 
Analysis of simulated data is presented in Section 5. In Section 6, we illustrate the 
proposed methodology using occupational injury data initially analyzed by Yau  
et al. (2004). Section 7 concludes with a discussion of future directions.

2 Dynamic models

The Poisson distribution has been widely used to model discrete count data. In 
the presence of overdispersion, the negative binomial (NB) distribution is often 
employed as an alternative. To model count data with excess zeros, Lambert (1992) 
introduced a regression model based on the zero-inflated Poisson (ZIP) distribution. 
Zero-inflated NB (ZINB) models have also been developed (e.g., Yau et al., 2003) to 
simultaneously account for overdispersion and zero-inflation.
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Based on the ZINB distribution, we introduce a class of dynamic models for zero-
inflated and overdispersed count time series. This class is formulated and developed 
in the state-space framework.

First, to accommodate temporal correlation in the series, we consider a stationary 
autoregressive process {zt} of order p (AR(p)) such that 

 ,z z zt t p t p t1 1 g z ez= + + +- -  (2.1)

where et is a Gaussian white noise process with mean 0 and variance v2. Here, z = 
(z

1
, …, zp)

< is a p-dimensional vector that consists of the autoregressive coefficients 
of {zt}. For the AR(p) process to be stationary, it is necessary (although not sufficient) 
that both 

| | .1 1and< <p p1 gz z z+ +

Conditioning on the current state zt, the observation yt is assumed to follow a 
ZINB distribution with probability mass function defined as follows: 
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where pt = k/(k + mt) denotes the probability of success in an NB distribution and 
mt is an intensity parameter. The intensity mt is explicitly linked to the latent state 
zt through a log-linear model, to be specified in equation (2.4). In the preceding, 
I y 0t=^ h is an indicator taking the value 1 when yt = 0 and 0 otherwise. For simplicity, 
the dispersion parameter k (default parameterization in R) and the zero-inflation 
parameter ~ are treated as constant, although they could be time-varying. Another 
popular parameterization of the dispersion parameter is to use /k1x =  (e.g., in 
SAS). For the remainder of the paper, both parameterizations for the NB dispersion 
parameter will be used, the choice depending on which is more convenient for the 
purpose at hand.

The conditional mean and variance of the ZINB distribution are given by 

 | | ,E Y z Y z1 1 1and Vart t t t t t t tm ~ m ~ ~m xm= - = - + +^ ^ ^ ^ ^h h h h h  (2.3)

respectively. Based on (2.3), the variance-to-mean ratio (i.e., 1 t~ x m+ +^ h ) is greater 
than or equal to 1, which implies that the presence of zero-inflation ( 0>~ ) and NB 
dispersion ( 0>x ) will both contribute to the overdispersion of Yt | zt. It is worth 
noting that the presence of the correlated random effects {zt} will not only account 
for autocorrelation but also for overdispersion.

Similar to Poisson and NB regression models for independent data, the following 
log-linear model is used to characterize the intensity parameter tm : 

 ,log logw zxt t t tbm = + +R  (2.4)
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where xt is a set of explanatory variables and b is the vector regression coefficients. 
Here, logwt denotes an offset variable, which can be used to account for varying 
population size over time.

The dynamic ZINB model defined by (2.1), (2.2) and (2.4) is very general and 
includes many important models as special cases. A list of the types of models subsumed 
by the dynamic ZINB model is provided in Table 1. For instance, the dynamic ZINB 
model reduces to a dynamic ZIP model when /k1 0"x = , to an ordinary ZINB 
model for independent data when 0v = , and to an ordinary Poisson model for 
independent data when 0"x , 0v =  and 0~ = . We emphasize that excess dispersion 
is not only introduced through the NB distribution ( )0>x , yet also through zero-
inflation ( )0>~  and latent autocorrelation ( )0>v . When the data is sufficiently and 
suitably overdispersed, the separation of the effects of overdispersion induced by x, 
~, v may be delineated. Otherwise, we recommend fitting a simpler model to avoid 
estimation problems due to weak identifiability, which results in a likelihood surface 
that exhibits gradual curvature in a neighborhood of the global maximum.

The NB distribution can accommodate a certain frequency of zeros. However, to 
characterize series where the prevalence of zeros is beyond the capacity of the NB 
distribution, the mixture parameter ~ can assign positive weight to the degenerate 
distribution at zero. In general, a value of ~ near zero will reflect a frequency of zeros 
that is compatible with the NB distribution, whereas a larger value will reflect zero-
inflation. A value of ~ near 1 corresponds to a series comprised of sparse positive 
counts with a preponderance of zeros. Such a time series could be difficult to model, 
since only the positive values inform the autocorrelation structure.

Because one can view the ZIP model as a two-component mixture (Lambert, 
1992) and the NB model as a Poisson-gamma mixture (Lawless, 1987), it is natural 
to rewrite the dynamic ZINB model in the following hierarchial form: 

| ~ , ,s s sNt t p t1 1U R- -^ h
~  ,u Bernoullit ~^ h
~  , / ,v k k1Gammat ^ h

| , , ~  ,y u v u v1Poissonst t t t t t tm-^^ h h
Table 1 Types of statistical models implied by the general dynamic ZINB model.

Zero-inflation Overdispersion Autocorrelation Model

No No No Poisson regression
Yes Dynamic Poisson regression

Yes No NB regression
 Yes Dynamic NB regression

Yes No No ZIP regression
 Yes Dynamic ZIP regression

Yes No ZINB regression
 Yes Dynamic ZINB regression

Source: Authors’ own.

 by guest on March 18, 2015smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


74 Ming Yang, Joseph E Cavanaugh and Gideon K D Zamba

Statistical Modelling 2015; 15(1): 70–90

where , ,z zs …t t t p 1= R
- +^ h  is a p-dimensional latent state vector. The initial state 

vector s0 is assumed to be normally distributed with mean 0n  and covariance matrix 
0R . Here U and R are p ◊ p matrices defined as follows: 
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Note that the covariance matrix R is not positive definite. This should not be 
surprising as only the first element of st contributes to the likelihood function. All 
the remaining (p – 1) elements of st simply serve as auxiliary variables so that the 
univariate AR(p) process can be written as a p-dimensional vector AR(1) (VAR(1)) 
process.

3 MCEM algorithm

The marginal likelihood of the observed data , ,y y y…:n n1 1= R^ h  cannot be expressed 
analytically since (i) the response distribution is non-Gaussian, and (ii) the random 
effects {zt} are autocorrelated. For these reasons, direct maximization of the marginal 
likelihood, if possible, would be extremely difficult. Therefore, instead of using 
gradient-based methods (e.g., Newton–Raphson), we resort to the EM algorithm 
(Dempster et al., 1977), which is a popular method for calculating maximum 
likelihood estimators (MLEs) for models involving missing data and/or unobservable 
latent variables.

Assuming the latent processes , , ,s s s s…:n n0 0 1= R R R R^ h , , ,u u u…:n n1 1= R^ h  and 
, ,v v v…:n n1 1= R^ h  could be observed, we orthogonally decompose the complete data 

likelihood (i.e., the joint density of s :n0 , u :n1 , v :n1  and y :n1 ) as follows: 
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(3.1)

Here, , , , ,ki b z~ v= R R R^ h  is the vector of unknown parameters. The initial state 
vector s0 is often assumed to be normally distributed with the mean vector 0n  and 
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covariance matrix 0R . Based on our experience, the choice of 0n  and 0R  has very 
little effect on estimated parameters. For simplicity, for the results compiled and 
reported for this paper, we use 00n =  and Ip0R = .

Due to the orthogonal decomposition in (3.1), the complete data log-likelihood 
(up to an additive constant) is given by 
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To implement the EM algorithm, we need to compute the expectation of lc i^ h 
given the observed data y :n1 . To simplify the notation, we let At

j^ h, bt
j^ h, ct

j^ h, dt
j^ h, et

j^ h,  
ft

j^ h and  gt
j^ h denote the conditional expectations of s st t1 1

R
- - , z st t 1- , zt

2, ut, vt, logvt 
and expu v z1 t t t-^ ^h h, respectively. In the E-step of the algorithm, the conditional 
expectation of lc i^ h is given by 
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Unlike the exact EM algorithm for linear and Gaussian state-space models 
(Shumway and Stoffer, 1982), there is no analytical form for the preceding 
conditional expectation due to the non-normality of the data. One approach to 
approximate the conditional expectation is to simulate dependent posterior samples 
using Markov chain Monte Carlo (MCMC). This approach has been adopted by 
Chan and Ledolter (1995) for fitting a Poisson state-space model. Another approach 
is to simulate independent posterior realizations based on the particle filter (Gordon 
et al., 1993) and the particle smoother (Godsill et al., 2004). This approach has 
been employed by Kim and Stoffer (2008) for fitting stochastic volatility models 
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in the presence of irregular sampling. Since it is more efficient to use independent 
realizations in an MCEM algorithm (Levine and Casella, 2001), we follow the latter 
approach (Kim and Stoffer, 2008) and approximate the conditional expectation via 
particle methods. The details of the particle methods for the dynamic ZINB model 
will be presented in the next section.

After the Monte Carlo E-step, the M-step of the algorithm becomes straight- 
forward due to the orthogonal decomposition of the complete data log-likelihood. 
In the M-step, the following partial derivatives are applied to maximize |Q ji i^ ^ hh : 
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where logk
dk
d k0W C=^ ^h h is the digamma function. At the jth iteration, closed-

form solutions exist to update j 1~ +^ h, j 1z +^ h and j 1v +^ h: 
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In addition, we can easily obtain k(j+1) and j 1b +^ h through iterative algorithms. For 
example, updating j 1b +^ h is equivalent to fitting a weighted Poisson regression.

Once we obtain the MLE through the MCEM algorithm, we apply Louis’s 
formula (Louis, 1982) to compute the observed information matrix Io i^ h. According 
to the missing information principle, the complete data information is the sum of the 
observed data information and the missing data information. Therefore, we have 

,I I Io c mi i i= -^ ^ ^h h h
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where the complete information matrix Ic i^ h and the missing data information 
matrix Im i^ h are defined as follows: 
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The elements of /lc2 2i and /lc
22 2 2i iR are given in the Appendix. Again, the particle 

methods can be used to approximate the conditional expectations in (3.2) and 
(3.3). The variance–covariance matrix is then obtained by taking the inverse of the 
observed information matrix.

4 Particle methods

In this section, we present the particle methods that are used to approximate the 
conditional expectations in the Monte Carlo E-step. Particle filtering (Gordon et al., 
1993) and particle smoothing (Godsill et al., 2004) belong to the class of sequential 
Monte Carlo (SMC) methods (Doucet et al., 2001). The basic idea behind particle 
methods is to approximate the conditional density of the latent states given the observed 
data using sequential importance sampling (SIS) and resampling. SIS is the SMC method 
that forms the basis of the particle methods. However, sample degeneracy is typically a 
problem associated with the SIS method. Specifically, sample degeneracy occurs when 
all but one of the importance weights (as subsequently defined) are close to zero. To 
avoid this problem, a resampling technique (e.g., bootstrapping) is applied to remove 
particles with small weights. The general concepts of particle filtering and smoothing 
for state-space models can be found in Kim and Stoffer (2008, pp. 828–829).

For the dynamic ZINB model, we implement particle filtering by first generating 
~ ,s N|

i
p0 0 0 0n R^^ hh . Then for t = 1, …, n, we complete the following steps to produce 

a set of N particles (i = 1, …, N) at each time point t.
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As a byproduct of the filtering algorithm, the log-likelihood of the observed data can 
be approximated by 

.log N q1
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Next, we use the Monte Carlo smoothing by Godsill et al. (2004) to obtain an 
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We obtain independent realizations by repeating the preceding steps for r = 1,  
…, R. The forward-filtering and backward-smoothing procedures are the non-linear 
and non-Gaussian extensions of the Kalman filter and the Kalman smoother.

5 Simulation

5.1 Model fitting based on simulated data

To evaluate the performance of the MCEM algorithm, we simulate a count series of 
length 200 from a dynamic ZINB + AR(2) model with the following linear predictor: 

,log x zt t t0 1m b b= + +

where xt = I(t>100) is a dummy variable indicating whether the time index t is greater than 
100. In applications involving intervention analysis, often referred to as interrupted 
time series analyses, this variable will represent whether the time is before or after 
the intervention. The parameters of the true model are .0 3~ = , .0 4x = , 20b = , 

11b =- , .0 81z = , .0 62z =-  and .0 5v = . The autoregressive coefficients (i.e., 1z  
and 2z ) are chosen such that the AR(2) process is stationary.

A total of eight dynamic models are fit to the simulated series: Poisson + AR(1), 
NB + AR(1), ZIP + AR(1), ZINB + AR(1), Poisson + AR(2), NB + AR(2), ZIP 
+ AR(2) and ZINB + AR(2). When fitting these dynamic models, the number of 
particles (N) and the number of replications (R) are chosen to be 500. The MCEM 
algorithm is stopped after 500 iterations. Table 2 shows the parameter estimates and 
their associated standard errors for the eight candidate models.
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Figure 1 displays trace plots of the log-likelihood for the eight candidate models. 
Unlike the exact EM algorithm for linear and Gaussian state-space models (Shumway 
and Stoffer, 1982), the log-likelihood in the MCEM algorithm is not guaranteed to 
increase at each iteration. Instead, as illustrated in the figure, the log-likelihood will 
increase dramatically in the first several iterations, and then stabilize as the estimated 
parameters approach the MLE.

Trace plots illustrating scaled changes for the parameter estimates are presented 
in Figure 2. We note that some of the parameters are still changing substantially 
even when the log-likelihood has plateaued, especially for the NB + AR(1) and NB + 
AR(2) models. Therefore, for the MCEM algorithm, a stopping rule solely based on 
log-likelihood change is unreliable. We recommend always checking the trace plots 
of parameter estimates for stabilization.

5.2  Simulation study

To investigate the finite sample distributional properties of the parameter estimators 
from the MCEM algorithm, an extensive simulation study is warranted. However, due 
to the computational requirements of the algorithm, a large scale study is prohibitively 
time consuming. As an alternative, we have compiled results for a small scale study 

Table 2 Parameter estimates (standard errors) for eight dynamic models fit to data simulated from a dynamic 
ZINB + AR(2) model with true parameters .0 3~ = , .0 4x = , 20b = , 11b =- , .0 81z = , .0 62z =-  and .0 5v = .

 Poisson + AR(1) NB + AR(1) ZIP + AR(1) ZINB + AR(1)

~   0.266 (0.043)  0.230 (0.052)
x  2.044 (0.288)   0.859 (0.325)

0b  1.152 (0.132)  2.075 (0.113)  1.981 (0.134)  2.254 (0.123)

1b –1.349 (0.200) –1.340 (0.173) –1.385 (0.215) –1.304 (0.197)

1z  0.032 (0.091)  0.201 (0.538)  0.187 (0.126)  0.311 (0.229)

2z    
v  1.527 (0.128)  0.204 (0.106)  0.964 (0.102)  0.408 (0.203)

Poisson + AR(2) NB + AR(2) ZIP + AR(2) ZINB + AR(2)

~ 0.265 (0.042)  0.267 (0.048)
x   1.726 (0.294)  0.278 (0.431)

0b  1.131 (0.708)  1.938 (0.203)  1.969 (0.131)  2.083 (0.140)

1b –1.355 (0.380) –1.347 (0.239) –1.370 (0.241) –1.384 (0.425)

1z  0.048 (0.092)  0.655 (0.156)  0.370 (0.125)  0.687 (0.189)

2z –0.112 (0.093) –0.781 (0.303) –0.399 (0.124) –0.696 (0.280)
v  1.524 (0.286)  0.337 (0.479)  0.866 (0.094)  0.529 (0.217)

Source: Authors' own.
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Figure 1 Trace plots of the log-likelihood for eight dynamic models fit to data simulated from a  
dynamic ZINB + AR(2) model.

Source: Authors’ own.
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Figure 2 Trace plots of scaled changes in parameter estimates from starting values. Estimates are 
for eight dynamic models fit to data simulated from a dynamic ZINB + AR(2) model. 

Source: Authors’ own.
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to examine the sampling distributions for estimators based on the eight model 
structures considered in the previous subsection. For each model structure, 100 series 
of length 200 are generated, the MCEM algorithm is used to fit models based on these 
series and the parameter estimates and standard errors are recorded. To reduce time 
requirements, we set N = 100 and R = 100, and we stopped the MCEM algorithm 
after 200 iterations. For the sake of brevity, we present a comprehensive summary of 
the results based on the dynamic ZIP + AR(2) model, and comment on the results not 
featured. We use the parameter values corresponding to the data generating model in 
the previous subsection, with the exception of x, which is set to zero.

To assess approximate normality of the estimators, Q-Q plots based on the sets of 
replicated estimates are presented in Figure 3. In constructing these plots, two sets of 
estimates have been omitted due to convergence failures with the fitted model. These 
plots illustrate that approximate normality holds for the sampling distributions of 
the estimators. However, the majority of the plots reflect slightly longer tails in the 
empirical distribution of the replicates than the tails for the reference normal curve. 
This behaviour should be attenuated as the sample size is increased. Table 3 provides 
the true parameter values, along with the means and medians of the estimates, the 
empirical standard deviations (ESD) of the estimates and the means of the asymptotic 
standard errors (ASE). We note a minor degree of bias associated with the estimation 
of the AR coefficients. In general, the ESDs are reasonably close to the average ASE. 
Therefore, it seems appropriate to calculate the standard errors based on equations 
(3.2)–(3.3).

The results for the sets based on the dynamic ZIP and Poisson models are similarly 
promising. The results for the sets based on the ZINB and NB models exhibit less 
adherence to the ideal asymptotic properties. This is not surprising, due to the 
problems with weak identifiability previously mentioned.

6 Application

In this section, we use the occupational injury data featured in Yau et al. (2004) 
to illustrate our proposed methodology. The application concerns the assessment 

Table 3 Summary statistics for replicated parameter estimates from fitted dynamic ZIP + AR(2) models.

 True Mean Median ESD ASE

~  0.3  0.297  0.298  0.040 0.038

0b  2.0  2.103  2.064 0.222 0.159

1b –1.0 –1.067 –1.058 0.264 0.242

1z  0.8  0.710  0.704 0.127 0.173

2z –0.6 –0.518 –0.541 0.145 0.162
v  0.5  0.524  0.518 0.073 0.102

Source: Authors’ own.
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Figure  3 Q-Q plots for the estimated parameters from a dynamic ZIP + AR(2) model with true parameters 
.0 3~ = , 20b = , 11b =- , .0 81z = , .0 62z =-  and .0 5v = .

Source: Authors’ own.
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of a participatory ergonomics intervention in reducing the incidence of workplace 
injuries among a group of hospital cleaners. The data consists of monthly (4-week) 
counts of work-related injuries that are routinely reported at an aggregate population 
level from July 1988 to October 1995. A participatory ergonomics intervention was 
introduced in the middle of the study in November 1992. During the study period, 
a large number of zero counts are observed due to the heterogeneity in risk and the 
dynamic worker population (Yau et al., 2004). Since the injury count series contain 
excess zeros relative to a Poisson distribution, Yau et al. (2004) modelled the data 
using a ZIP mixed autoregression, which is a special case of the general dynamic 
ZINB model proposed in this paper.

Our analyses of the injury count series focus on two objectives. First, we wish to 
investigate whether there is additional autocorrelation that is not explained by the 
simple AR(1) structure. Second, we wish to investigate the presence of unexplained 
excess dispersion, since any overdispersion in the counts may not be fully accounted 
for by the correlated random effects {z

t}. To address these issues, we fit eight candidate 
models with the same structures as the models considered in Section 5. Specifically, 
we employ the linear predictor 

, , , ,log x z t 1 96…t t t0 1m b b= + + =

where xt = I(t>57) is a dummy variable indicating whether the time index t is greater 
than the intervention time (57 months). Thus, 1b  reflects the reduction in injury risk 
due to the intervention. We consider the dynamic model structures Poisson + AR(1), 
NB + AR(1), ZIP + AR(1), ZINB + AR(1), Poisson + AR(2), NB + AR(2), ZIP + 
AR(2) and ZINB + AR(2). The Akaike (1974) information criterion (AIC) is used to 
guide the selection of an optimal model.

Table 4 features results for the four candidate models with the AR(1) correlation 
structure. All four models indicate a significant reduction of work-related injuries 
after the introduction of the intervention ( 0<1b ). The standard errors of 1bW  are 
very similar across the four models, but the magnitudes of 1bW  are less pronounced 

Table  4 Parameter estimates (standard errors) for dynamic models fit to the injury count series.

Poisson + AR(1) 
(AIC = 316.0) 

NB + AR(1) 
(AIC = 316.2) 

ZIP + AR(1) 
(AIC = 308.6) 

ZINB + AR(1)
(AIC = 311.3)

~  0.304 (0.084)  0.312 (0.084)
x  0.792 (0.303)   0.042 (0.055)

0b  0.331 (0.213)  0.633 (0.184)  0.852 (0.208)  0.896 (0.185)

1b –1.124 (0.347) –1.086 (0.308) –0.905 (0.347) –0.878 (0.365)

z  0.293 (0.202)  0.574 (0.302)  0.520 (0.369)  0.576 (0.424)
v  0.841 (0.155)  0.243 (0.176)  0.403 (0.202)  0.342 (0.172)

Source: Authors’ own.
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Figure  4 Particle smoothing of the state based on dynamic models fit to the injury count 
series. Dots represent the observed counts.

Source: Authors’ own.

after accounting for zero-inflation. The ZIP + AR(1) model that accounts for zero-
inflation has the smallest AIC. The more complicated ZINB + AR(1) model does 
not outperform the ZIP + AR(1) model, indicating there is no need to incorporate a 
latent gamma component to explain the overdispersion.

Figure 4 displays the particle smoothing of the series for the four candidate models 
with the AR(1) correlation structure. Not surprisingly, the fitted values from the ZIP 
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+ AR(1) and ZINB + AR(1) models are very similar. Failure to account for zero-
inflation in the Poisson + AR(1) and NB + AR(1) models results in characteristically 
different fitted values.

The four models featuring the AR(2) correlation structure do not fit the series 
appreciably better than their AR(1) counterparts, and based on AIC, the added 
complexity of the AR(2) structure is unwarranted. Thus, our findings here reinforce 
the use of the dynamic ZIP + AR(1) model proposed by Yau et al. (2004) for the 
analysis of this data. However, our modelling framework is very general in the sense 
that all four count data distributions (Poisson, NB, ZIP, ZINB) and any order of 
autoregressive correlation can be examined.

7  Discussion

Count time series with excess zeros are encountered in many areas of statistical 
application. Although the Poisson and NB distributions have been widely used in 
practice to model discrete count data, their forms are too simplistic to accommodate 
zero-inflation. Failure to account for zero-inflation while analyzing such data may 
result in misleading inferences and the detection of spurious associations.

In this article, we propose a class of state-space models to analyze time series 
of counts containing excess zeros. Both simulated and real examples are presented 
to illustrate the proposed methodology. To implement the modelling procedures 
introduced in this paper and in Yang et al. (2013), we have developed an R package 
called ZIM (zero-inflated models). This package is currently available on CRAN 
(Comprehensive R Archive Network). Due to the possibility of estimation problems 
caused by weak identifiability, we do not recommend fitting a dynamic ZINB 
model when sample information is limited. Specifically, if only a short sequence 
of observations is available (e.g., n < 60), or the series is comprised of very sparse 
counts relative to high zero-inflation, the complexity of the dynamic ZINB model 
may lead to poor results.

The implementation of an effective, general stopping criterion for the MCEM 
algorithm presents a daunting challenge, especially when weak identifiability is 
a potential concern. Many stopping criteria commonly used in the literature are 
appealing. For example, one can terminate the algorithm when the log-likelihood 
starts to stabilize, or when the score vector is close to zero. Our experience is that these 
rules fall short in the presence of weak identifiability. We have found some success 
in building a stopping criterion using an iteration threshold in conjunction with log-
likelihood trace plots. Specifically, we terminate the algorithm after 500 iterations, 
and examine the resulting trace plots. The development of a defensible, automated 
stopping rule is a worthwhile practical objective that we hope to accomplish in our 
future research.

For the methodological developments presented in this paper, the parameters   
~ and k are assumed to be constant over time. With some applications, it may 
be desirable to allow these parameters to evolve over time. In such situations, one 
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could formulate logistic regression and log-linear regression models to impose 
structure on ~t and kt, respectively, which would allow for the incorporation of 
potentially relevant predictors (e.g., a pre-/post-intervention indicator). However, 
non-identifiability could arise as the complexity of the model increases. Further 
research on this issue is needed.

With the advancement of modern computing, Bayesian methods have become 
increasingly popular in applied statistics. In future work, we hope to develop a fully 
Bayesian modelling framework for zero-inflated time series using either MCMC 
algorithms (e.g., Gibbs and Metropolis–Hastings sampling) or the integrated  
nested Laplace approximations (INLA) approach proposed by Rue et al. (2009). 
Specifically, we plan to develop an efficient particle MCMC algorithm (Andrieu  
et al., 2010) for the dynamic models presented in this article. Such a hybrid  
algorithm will allow one to efficiently sample from high-dimensional probability 
distributions. We will compare the (particle) MCMC approach to the approximate 
INLA approach.
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Appendix 

This appendix contains the first and second partial derivatives of the complete  
data log-likelihood for the general dynamic ZINB model. The elements of /lc2 2i are 
given by
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Due to the orthogonal decomposition of the complete data likelihood, most of 
the off-diagonal elements in /lc

22 2 2i iR are zeros. The following are the diagonal 
elements and the non-zero off-diagonal elements: 
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