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ABSTRACT
Discrepancymeasures are often employed in problems involving the
selection and assessment of statistical models. A discrepancy gauges
the separation between a fitted candidatemodel and the underlying
generating model. In this work, we consider pairwise comparisons
of fitted models based on a probabilistic evaluation of the ordering
of the constituent discrepancies. An estimator of the probability is
derived using the bootstrap. In the framework of hypothesis testing,
nestedmodels areoften comparedon thebasis of thep-value. Specif-
ically, the simpler null model is favored unless the p-value is suffi-
ciently small, in which case the null model is rejected and the more
general alternativemodel is retained. Using suitably defined discrep-
ancy measures, we mathematically show that, in general settings,
the likelihood ratio test p-value is approximatedby the bootstrapped
discrepancy comparison probability (BDCP). We argue that the con-
nection between the p-value and the BDCP leads to potentially new
insights regarding the utility and limitations of the p-value. The BDCP
framework also facilitates discrepancy-based inferences in settings
beyond the limited confines of nested model hypothesis testing.
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1. Introduction

A statistical model embodies a set of assumptions regarding how a set of data was gen-
erated. Ideally, a model will provide a good approximation to the true data-generating
mechanism. Using the observed data, a hypothesis regarding some aspect of the model
can be evaluated via a hypothesis test. In hypothesis testing, two hypotheses, the null and
alternative, are proposed. The null typically corresponds to an assumption of no effect or
no difference. The model corresponding to the alternative is assumed to be adequately
specified.

In standard hypothesis testing, if the alternative model is not adequately specified, then
the validity of the results of a hypothesis test, including the p-value, is brought into ques-
tion. In many statistical modeling applications, the notion of any model being correct is
difficult to defend, thus reminding one of the famous George Box [8] quote: ‘All models
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are wrong; some are useful.’ Unfortunately, hypothesis testing is often performed in set-
tings where the alternative model is unlikely to provide an adequate characterization of the
underlying phenomenon. Johnson [15] provides ecological examples in which hypothesis
testing was performed when the alternative model is almost certainly underspecified.

In recent years, misunderstanding and misapplication of the p-value has led to skepti-
cism in the general efficacy of hypothesis testing in scientific research [23]. This skepticism
has led to some extreme decisions. For instance, in 2015, the editors of Basic and Applied
Social Psychology decided to ban all p-values [32]. The mounting controversy led the
American Statistical Association (ASA) to take the unprecedented step of issuing a pol-
icy statement on p-values, hoping to reduce confusion about their proper interpretation
and use [33].

There is a growing sense that practitioners of statistical methods must rethink the stan-
dard p-value interpretation. For instance, Bland [6] and Boos and Stefanski [7] argue
the need for a more refined interpretation of p-value distribution theory. Johnson [16]
and McShane et al. [20] propose modifications to the interpretation of the p-value as an
evidence measure in light of concerns over replication.

In this paper, we introduce a novel interpretation of the likelihood ratio (LR) test p-value.
Todevelop this alternative interpretation, ourwork introduces the discrepancy comparison
probability (DCP), which is a pairwise model comparison probability based on discrep-
ancy measures. A discrepancy gauges the separation between a fitted candidate model and
the underlying generating model. Discrepancies can be used to delineate between models,
with the notion that a smaller discrepancy signifies amodel thatmore closely adheres to the
truth. When using discrepancies to select an appropriate model, it is typically unnecessary
to assume one of the candidate models is the truth. Rather, most model selection tech-
niques employing discrepancies seek to determine which model most closely corresponds
to the truth, without requiring any candidate model to be precisely true. However, because
a discrepancy depends on the unknown data generating process, calculating the discrep-
ancy is impossible. Instead, under suitable conditions, model selection criteria may be
derived as asymptotically unbiased estimators of expected discrepancies. Rather than rely-
ing on asymptotic theory to estimate discrepancies, this paper utilizes bootstrap resampling
techniques to characterize the distribution of the discrepancy.

The DCP has broader utility and requires fewer assumptions than hypothesis testing
and the p-value. Despite the broader applicability of the DCP, we attempt to establish a
connection between the p-value and the DCP when hypothesis testing assumptions are
met. Because the constituent discrepancies of the DCP cannot be calculated, an estimator
of theDCP is derived using the bootstrap.We show that in certain large-sample settings, the
LR p-value and the bootstrapped discrepancy comparison probability (BDCP) are approx-
imately equal. To understand the importance of this connection, consider the standard
interpretation of the p-value: ‘the probability that if the null hypothesis is true, a test statis-
tic will have a value as extreme or more extreme than the value we actually observe’ [14].
Thus, the p-value is a probability conditioned on the null being true. On the other hand,
the validity of discrepancy functions, and thus the BDCP, does not depend on whether the
model is true. Therefore, by drawing a connection between the BDCP and the LR p-value,
we show that rather than assuming the null is true, as the standard p-value interpretation
requires, the LR p-value can at times simply be interpreted as a bootstrap-based probability
that the null model is better than the alternative.
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This paper establishes a connection between the BDCP and the LR p-value. This rela-
tionship between the BDCP and the p-value, however, can be demonstrated for most
asymptotic tests based on a suitable discrepancy formulation. In work not shown, the con-
nection has been established for the Wald and score tests (A detailed development can be
found in [26]). Importantly, once the connection between the BDCP and the p-value is
justified, a practitioner can use the connection to interpret the p-value in an alternative
manner, without having to actually evaluate the BDCP. We discuss the benefits that can
be gleaned from the connection between the BDCP and the p-value, including alternative
interpretations of the p-value, which lead to potentially new insights regarding its behav-
ior. While the BDCP can be connected to the p-value, the BDCP can also be employed
in settings that will not lead to an approximation of the p-value. The utility of the DCP
framework in settings that do not necessarily lead to a natural connection to the p-value
will also be considered.

In Section 2, we formally introduce discrepancy functions and how to estimate them
using the bootstrap. We then introduce the discrepancy comparison probability (DCP) as
a pairwise comparison of the discrepancies of twomodels. In Section 3, wemathematically
show that the LR p-value can be approximated by the BDCP using a suitably chosen dis-
crepancy. The mathematical results of Section 3 are supported with a simulation study
in Section 4. In Section 5, we examine the benefits that can be gleaned from connect-
ing the p-value to a discrepancy-based comparison of models, and then explain that the
DCP framework can be applied in a broader range of settings than those in which stan-
dard hypothesis testing is valid. In Section 6, we apply our methodology to a biomedical
application. We end with some concluding remarks in Section 7.

2. Background

In this section, we provide an introduction to discrepancy functions and discuss how the
bootstrap can be applied to estimate the distribution of the overall discrepancy.

2.1. Discrepancy functions

Model selection problems often employ discrepancy functions to aid in the choice
between competing models. Suppose we have a vector of independent observations
y = (y1, . . . , yn)T, which is generated from an unknown, true distribution g(y) that is not
necessarily parametric. Further, suppose a parametric candidate model f (y | θ) is put forth
to approximate the observed data y. Specifically, assume the candidate model belongs to a
parametric class of densities

F = {
f (y | θ) : θ ∈ �

}
,

where � is the parameter space for θ . A discrepancy function d(g, f ) provides a measure
of the disparity between the true density g(y) and a parametric model f (y | θ) that satisfies

d(g, f ) ≥ d(g, g).

A discrepancy function need not be a formal distance metric. However, a discrepancy
should still behave in a manner similar to a distance. Namely, as the dissimilarity between
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g(y) and f (y | θ) increases, the discrepancy d(g, f ) should increase accordingly. For nota-
tional simplicity, we assume candidate parametric models can be characterized by their
parameter vector θ , and will thus denote d(g, f ) by d(g, θ).

Let �(θ | y) = log f (y | θ) be the natural logarithmof the likelihood function for the can-
didate model. Accordingly, let �i(θ | yi) represent the contribution of the ith observation
to the log-likelihood. The Kullback-Leibler (KL) discrepancy between the true model g(y)
and candidate model f (y | θ) is defined as

dKL(g, θ) = Eg {−2�(θ | z)} ,
where Eg denotes expectation with respect to the true distribution g, and z = (z1, . . . , zn)T
is a sample of independent observations drawn from the true distribution g, generated
independently of y. The KL discrepancy assesses how well the candidate model predicts
future data arising from the true distribution. In the subsequent development, y will serve
as a fitting sample and z as a validation sample.

For the purpose at hand, the KL discrepancy may be viewed as an operationally equiv-
alent variant of the ubiquitous Kullback-Leibler information [17]. The KL information
between the true model g(y) and candidate model f (y | θ) may be defined as

IKL(g, θ) = Eg
{
log

g(z)
f (z | θ)

}
.

As a consequence of Jensen’s inequality, IKL(g, θ) ≥ 0 with equality if and only if g(y) and
f (y | θ) are the same density. Although IKL(g, θ) is not a formal metric, the KL information
reflects the separation between the true model and the candidate model. Note that we can
write

2IKL(g, θ) = dKL(g, θ) − Eg
{−2 log g(z)

}
.

Since Eg{−2 log g(z)} is a constant that does not depend on the structure of the candi-
date model, for the purpose of discriminating among various candidate models, the KL
discrepancy dKL(g, θ) serves as a valid substitute for the KL information IKL(g, θ).

Quantifying how well the fitted candidate model approximates the true distribution is
often of interest in amodel selection problem. Let θ̂ = argmaxθ∈��(θ | y)denote themaxi-
mum likelihood estimator of θ . Similarly, let f (y | θ̂)denote the corresponding fittedmodel,
and let �(θ̂ | y) = log f (y | θ̂). The discrepancy between the truemodel g and the fitted can-
didate model f (y | θ̂) is referred to as the overall discrepancy, and is denoted d(g, θ̂). The
overall KL discrepancy for the fitted candidate model f (y | θ̂) is thereby

dKL(g, θ̂) = Eg {−2�(θ | z)} |
θ=θ̂

.

Note that the overall discrepancy d(g, θ̂) is a random variable, as it is a function of the
estimated parameter vector θ̂ , and thus depends on y. Therefore, it is useful to think of
the distribution of d(g, θ̂). Model selection criteria have been developed that seek to esti-
mate the distribution of d(g, θ̂), or some characteristic of its distribution. For instance,
under certain regularity conditions, the Akaike information criterion (AIC; [1,2]) serves
as an asymptotically unbiased estimator of the expected value of the overall KL discrep-
ancy. For an overview ofmodel selection criteria that focus on the expected value of overall
discrepancies, see McQuarrie and Tsai [19] and Burnham and Anderson [9].
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2.2. Using the bootstrap to estimate discrepancy functions

Instead of relying on asymptotics to estimate the expected value of the overall discrepancy
d(g, θ̂), this paper uses bootstrap resampling techniques to approximate the distribution of
d(g, θ̂). Efron [10,11] was the first to develop the idea of using the bootstrap in the model
selection context. Our method employs the non-parametric bootstrap, since this version
of the bootstrap is not impacted by model misspecification.

The bootstrap samples are of size n, drawn with replacement from y. Note that for
most applications, for i = 1, . . . , n, each observation yi will have corresponding covariates
xi = (xi1, . . . , xiJ)T, where for j = 1, . . . , J, xij denotes the ith observation on the jth covari-
ate. For each observation yi included in a bootstrap sample, its corresponding covariate
vector xi is also included, and thus the selection of yi implies the selection of (yi, xTi )T. Fol-
lowing a common convention of modeling notation, we will often let the covariates xi and
the outcome yi be represented simply by yi.

We can use the bootstrap to estimate the distribution of the overall discrepancy d(g, θ̂),
by applying what Efron and Tibshirani [12] refer to as the ‘plug-in principle.’ The plug-in
principle dictates that each element of the overall discrepancy is replaced by its bootstrap
analogue. For instance, applying the plug-in principle to the overall KL discrepancy can be
summarized by the following replacements:

g → ĝ, y → y∗, Eg → Eĝ , θ̂ → θ̂
∗
.

Here, ĝ is the empirical distribution; y∗ is a bootstrap sample drawn from ĝ, and θ̂
∗
is the

MLE of θ derived under the bootstrap sample y∗. Because the observations y1, . . . , yn are
independent, the bootstrap analogue to the overall KL discrepancy is then given by

dKL
(
ĝ, θ̂

∗) = Eĝ {−2�(θ | z)} |
θ=θ̂

∗

=
n∑
i=1

{
−2�i(θ̂

∗ | yi)
}

= −2�(θ̂
∗ | y).

Rather than just thinking in terms of the overall KLdiscrepancy, consider a generic discrep-
ancy d. To derive a bootstrap-based estimator of the distribution of the overall discrepancy,
we first draw b = 1, . . . ,B bootstrap samples from y. For b = 1, . . . ,B, let the MLE of θ

based on the bth bootstrap sample be denoted θ̂
∗
(b). Then, for b = 1, . . . ,B, calculate the

bootstrap analogue to the overall discrepancy d(ĝ, θ̂
∗
(b)). The set

{
d

(
ĝ, θ̂

∗
(b)

)
: b = 1, . . . ,B

}

serves as a bootstrap-based approximation to the distribution of the overall discrepancy.

2.3. The discrepancy comparison probability (DCP)

Suppose that two nested models are put forth to approximate observed data y. Delineating
between these twomodels is often done using hypothesis testing, where we choose in favor
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of the null model unless the p-value is sufficiently small, in which case we reject the null
and decide in favor of the alternative.

However, deciding between these two competing models could also be done using dis-
crepancy functions. Let the MLE of θ for the null and alternative models be denoted θ̂0
and θ̂ , respectively, with corresponding overall discrepancies d(g, θ̂0) and d(g, θ̂). There
exist many ways in which a model can be evaluated in the discrepancy function frame-
work. For instance, suppose one is interested in which of the two models has a smaller
expected overall KL discrepancy. Then, choosing the model with the smaller AIC would
be an appropriate way of proceeding. However, in this paper, we do not seek to delineate
between two models using their expected overall discrepancies, but instead evaluate the
models using the probability

P = Pr
[
d(g, θ̂0) < d(g, θ̂)

]
,

which we refer to as the discrepancy comparison probability (DCP). The DCP is the prob-
ability that the fitted null model will be more congruous with the true model than the
fitted alternative, as measured by the discrepancy function d. To help better understand
the DCP, suppose P = 0.80. Then, the fitted null model will have a smaller overall dis-
crepancy than the fitted alternative in 80% of samples of size n drawn from the generating
distribution. The null model may be better without conforming precisely to the truth; if
the bias of the null model is negligible compared to the additional estimation error of the
alternative model, then the null will be preferred. Importantly, the DCP is a pairwise com-
parison of the two competing models because it compares the null and alternative overall
discrepancies derived under the same samples. Therefore, the DCP is actually a measure on
the joint distribution of d(g, θ̂0) and d(g, θ̂).

Of course, because the true distribution g is unknown, we cannot calculate either
d(g, θ̂0) or d(g, θ̂). Instead, as outlined in the previous subsection, we employ bootstrap
resampling to approximate their joint distribution. For the null and alternative models, let
the MLE of θ derived using the bootstrap sample be denoted as θ̂

∗
0 and θ̂

∗
, respectively.

Also, let the null and alternative model bootstrap-based estimator of the overall discrep-
ancy be denoted d(ĝ, θ̂

∗
0) and d(ĝ, θ̂

∗
), respectively. Finally, for b = 1, . . . ,B, let the null and

alternative modelMLE of θ based on the bth bootstrap sample be denoted θ̂
∗
0(b) and θ̂

∗
(b),

respectively. Then, for b = 1, . . . ,B, we apply the plug-in principle to derive the following
empirical approximation of the joint distribution of d(g, θ̂0) and d(g, θ̂) :{(

d
(
ĝ, θ̂

∗
0(b)

)
, d

(
ĝ, θ̂

∗
(b)

))
: b = 1, . . . ,B

}
.

Because the DCP P is of particular interest in this paper, we use the bootstrap to derive
an estimator. Let Pr∗ denote probability with respect to the joint bootstrap distribution
of d(ĝ, θ̂

∗
0) and d(ĝ, θ̂

∗
). Following the plug-in principle, the bootstrap-based discrepancy

comparison probability P∗, or the BDCP, is then

P∗ = Pr∗
[
d(ĝ, θ̂

∗
0) < d(ĝ, θ̂

∗
)
]
.

The BDCP P∗ is the probability the bootstrap-based estimator of the overall discrepancy is
smaller under the null than under the alternative. Let 1(·) denote the indicator function.
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We can approximate P∗ by drawing b = 1, . . . ,B bootstrap samples, and calculating

P̂∗ = 1
B

B∑
b=1

1
{
d

(
ĝ, θ̂

∗
0(b)

)
< d

(
ĝ, θ̂

∗
(b)

)}
,

which is simply the proportion of the B bootstrap samples in which the bootstrap-based
overall discrepancy estimator is smaller under the null model than under the alterna-
tive. Conceptually, the BDCP mimics the DCP in that the DCP is a probability based on
repeated samples drawn from the generating distribution, whereas the BDCP is a proba-
bility based on drawing repeated bootstrap samples from the sample y. The BDCP is then
the proportion of the samples in which the fitted null model is more congruous with the
‘truth’ y than the fitted alternative.

3. Connection with LR p-value

Hypothesis testing, and by extension the p-value, is criticized for the illogical premise of
testing the correctness of a hypothesis in settings in which no hypothesis is likely to be
exactly correct. The discrepancy function approach tomodel selection does not suffer from
this same criticism.Despite the differences in these approaches tomodel selection, in large-
sample settings with nested models, under an adequately specified alternative model, we
will theoretically establish that the LR p-value is approximately equal to the BDCP using
specifically chosen discrepancies. Employing the BDCP under the KL discrepancy, this
result is first established in the ‘full null’ setting in which the null hypothesis pre-specifies
all parameter values. Using a variant of the KL discrepancy, we then establish the result in
the ‘partial null’ setting, where only a portion of the parameter values are pre-specified by
the null hypothesis. We derive these results under the assumptions of the LR test.

3.1. The full null setting

In the full null setting the null hypothesis pre-specifies all parameter values. Thus, the
null hypothesis H0 : θ = θ0 is tested against the general alternative HA : θ �= θ0. If we let
dim(θ) = pA, with the LR test statistic denoted by

L = 2
(
�(θ̂ | y) − �(θ0 | y)

)
, (1)

then the LR test p-value for these hypotheses is

pLR = Pr[χ2
pA > L], (2)

where χ2
pA is a central chi-square random variable with pA degrees of freedom [34].

For the asymptotic χ2 distribution of the LR test statistic to hold, both the true param-
eter vector and the parameter vector under the null hypothesis must lie on the interior
of the parameter space. If some element(s) of the null hypothesis parameter vector lie on
the boundary of the parameter space, then the null distribution of LR test statistic is more
complicated and may be difficult to characterize. In such settings, the null distribution
is generally a mixture of a degenerate distribution at zero and a χ2 distribution; see, for
instance, Self and Liang [28]. Additional relevant references include [3,13,31].
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The overall KL discrepancy of the model corresponding to the alternative hypothesis is

dKL(g, θ̂) = Eg {−2�(θ | z)} |
θ=θ̂

,

whose bootstrap-based estimator is

dKL(ĝ, θ̂
∗
) = −2�(θ̂

∗ | y). (3)

Similarly, the null overall KL discrepancy is

dKL(g, θ0) = Eg {−2�(θ0 | z)} .

Unlike the alternative model whose parameter vector is maximized over its parameter
space, the null parameter vector is fixed at θ0 in the full null setting. Therefore, the
bootstrap-based ‘estimator’ of θ is θ0 for all bootstrap samples. The bootstrap-based
estimator of the null overall KL discrepancy is then

dKL(ĝ, θ0) = −2�(θ0 | y). (4)

Note that conditioned upon the observed data y, the bootstrap-based estimator of the null
overall KL discrepancy dKL(ĝ, θ0) is actually fixed, and thus does not vary from one boot-
strap sample to the next. Applying the null and alternative bootstrap-based KL discrepancy
estimators in (3) and (4), respectively, yields the following BDCP:

P∗
KL = Pr∗

[
−2�(θ0 | y) < −2�(θ̂

∗ | y)
]
. (5)

To present the proof connecting the likelihood ratio test p-value with the BDCP, we intro-
duce the following distributional constructs. Let the observed Fisher information matrix
be denoted by

I(θ | y) = −∂2�(θ | y)
∂θ∂θT

= −
n∑

i=1

(
∂2

∂θ∂θT
�i(θ | yi)

)
,

and let the expected Fisher information be denoted

I (θ) = E
[
I(θ | y)] .

Proposition 3.1: Assuming that the large-sample properties of theMLEs hold, that the alter-
native model is adequately specified, and that the true parameter vector and the parameter
vector under the null hypothesis lie in the interior of the parameter space, then for testing a
full null hypothesis of H0 : θ = θ0 versus the alternative of HA : θ �= θ0,

pLR ≈ P∗
KL.

Proof: We begin by stating a well-known result frommaximum likelihood estimation that
will be applied later in the proof. Recall that for large n, under certain regularity conditions
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with the alternative model being adequately specified,

θ̂
.∼ NpA

(
θ ,I −1(θ)

)
.

It follows that

(θ̂ − θ)TI (θ)(θ̂ − θ)
.∼ χ2

pA . (6)

Recall from (5) that the equation for the BDCP is

P∗
KL = Pr∗

[
−2�(θ0 | y) < −2�(θ̂

∗ | y)
]
.

Because Pr∗ denotes probability with respect to the joint distribution of dKL(ĝ, θ̂
∗
) and

dKL(ĝ, θ0), we can conceptualize the observed data y as being fixed under Pr∗. The boot-
strap sample, and thus θ̂

∗
, are random under Pr∗. We rearrange P∗

KL so as to introduce the
likelihood ratio statistic L from (1):

P∗
KL = Pr∗

[
−2�(θ0 | y) < −2�

(
θ̂

∗ | y
)]

= Pr∗
[
2
(
�(θ̂ | y) − �(θ0 | y)

)
< 2

(
�(θ̂ | y) − �(θ̂

∗ | y)
)]

= Pr∗
[
2
(
�(θ̂ | y) − �(θ̂

∗ | y)
)

> L
]
. (7)

Under fixed observed data y, the likelihood ratio statistic L is fixed. In order to show that
the LR p-value in (2) is approximated by P∗

KL in (7), we need to show that under Pr∗,

2
(
�(θ̂ | y) − �(θ̂

∗ | y)
) .∼ χ2

pA .

Consider taking a second-order Taylor series expansion of �(θ̂
∗ | y) about θ̂ , which yields

�(θ̂
∗ | y) ≈ �(θ̂ | y) − 1

2 (θ̂
∗ − θ̂)TI(θ̂ | y)(θ̂∗ − θ̂).

For large n, the observed information is approximated by the expected information, and
thus we can write

2
(
�(θ̂ | y) − �(θ̂

∗ | y)
)

≈ (θ̂
∗ − θ̂)TI (θ̂)(θ̂

∗ − θ̂). (8)

Assuming the data at hand adequately characterizes the sampling distribution of θ̂ via the
bootstrap distribution of θ̂

∗
, then applying the large-sample result (6) to the bootstrapping
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context yields

(θ̂
∗ − θ̂)TI (θ̂)(θ̂

∗ − θ̂)
.∼ χ2

pA . (9)

Applying (8) and (9), we have

2
(
�(θ̂ | y) − �(θ̂

∗ | y)
) .∼ χ2

pA .

Referring back to (7), we can establish our desired result:

P∗
KL = Pr∗

[
2
(
�(θ̂ | y) − �(θ̂

∗ | y)
)

> L
]

≈ Pr
[
χ2
pA > L

]

= pLR. (10)

We have thus shown that, assuming an adequately specified alternative model, P∗
KL ≈ pLR

when the null hypothesis pre-specifies all parameter values. This completes the proof. �

Result (10) establishes the LR p-value as a bootstrap-based estimator of the probability
that the null is ‘better’ than the alternative, as measured by the bootstrapped overall KL
discrepancy. Clearly, the p-value is not the probability that the null is true, but it is not a
requirement for the null model to be true for it to better than the alternative. If θ0 provides
a reasonable characterization of θ , then due to the sampling variability incurred under
the alternative model, the null model may be more accurate than the estimated alternative
model.

Because the null hypothesis pre-specifies all parameter values in the full null setting, the
bootstrap-based parameter vector estimator for the null model is fixed under Pr∗, leading
to the null bootstrap-based KL discrepancy estimator d(ĝ, θ0) also being fixed. In the fol-
lowing subsection, we address the partial null setting, in which the null hypothesis does
not pre-specify all parameter values.

3.2. The partial null setting

In the partial null setting, we again wish to show that the LR p-value is approximated by
the BDCP. Suppose the null hypothesis pre-specifies k of the pA parameter values. Let the
parameter vector θ be partitioned into the vector of parameters that the null pre-specifies,
denoted by θ (1), and the parameters that are not pre-specified, denoted θ (2).We refer to θ (1)
as the parameters of interest and to θ (2) as the nuisance parameters. The null hypothesis
of the formH0 : θ (1) = θ0(1) is tested against the alternativeHA : θ (1) �= θ0(1). Let θ̂0(2) =
argmaxθ (2)

�(θ0(1), θ (2) | y) be the MLEs of the nuisance parameters derived under the null
hypothesis. Then, let the MLEs derived under the null hypothesis and the sample y be
denoted θ̂0 = (θT0(1), θ̂

T
0(2))

T. Let the unrestrictedMLEs of θ derived from the sample y also

be partitioned so that θ̂ = (θ̂
T
(1), θ̂

T
(2))

T. Similarly, let the unrestricted MLEs of θ derived

from the bootstrap sample y∗ also be partitioned so that θ̂
∗ = (θ̂

∗T
(1), θ̂

∗T
(2))

T.
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Letting the LR test statistic be denoted

L = 2
(
�(θ̂ | y) − �(θ̂0 | y)

)
,

the LR test p-value in the partial null setting is

pLR = Pr
[
χ2
k > L

]
.

As in the full null setting, we need the parameter vectors to lie on the interior of the
parameter space for the preceding result to hold.

Unlike in the full null setting, we will be unable to connect the LR p-value to the BDCP
under the conventional KL discrepancy. That the BDCP under the conventional KL dis-
crepancy does not approximate the p-value in this setting does not preclude one fromusing
the KL discrepancy; the BDCP under the KL discrepancy is still a valid tool for deciding
between two competingmodels, it simply does not have the connectionwith the LR p-value
which we seek.

To draw a connection between the p-value and the BDCP, we instead use amodified ver-
sion of the KL discrepancy, which we refer to as the parameter of interest Kullback-Leibler
(PIKL) discrepancy. The PIKLdiscrepancy constitutes only a smallmodification of the con-
ventional KL discrepancy and is a sensible tool for evaluatingmodels that contain nuisance
parameters. Of particular importance to this paper, the BDCP under the PIKL discrepancy
approximates the LR p-value in the partial null setting, as we will soon establish. To under-
stand the PIKL discrepancy, we first introduce the notion of the pseudo-true parameter
θ̄ . The pseudo-true parameter is defined as the parameter value that minimizes the KL
discrepancy. Write

θ̄ = argminθdKL(g, θ).

If the model is adequately specified (i.e. g(y) ∈ F ), then θ̄ is the true value of θ .
However, θ̄ is well-defined, regardless of whether the model is adequately specified.
Let the pseudo-true nuisance parameter vector for the null model be denoted θ̄0(2) =
argminθ (2)

dKL(g, (θ0(1), θ (2))). For the alternative model, let the pseudo-true parameter
vector be denoted by(

θ̄
T
(1), θ̄

T
(2)

)T = argmin(θ (1),θ (2))dKL
(
g,

(
θ (1), θ (2)

))
.

Also, let the MLEs of the parameters of interest, derived under the restriction that
θ (2) = θ̄ (2), be denoted θ̂C(1) = argmaxθ (1)

�((θ (1), θ̄ (2)) | y). We will refer to θ̂C(1) as the
conditional MLEs, to emphasize their dependence on the condition θ (2) = θ̄ (2).

Under the alternativemodel, the overall PIKL discrepancy evaluates the KL discrepancy
at the pseudo-true values of the nuisance parameters and at the conditional MLEs of the
parameters of interest. Specifically, for the alternative model, the measure is given by

dPIKL
(
g, (θ̂C(1), θ̄ (2))

)
= Eg

{−2�(θ (1), θ̄ (2) | z)} |
θ (1)=θ̂C(1)

,

whereas under the null model, the measure is

dPIKL
(
g, (θ0(1), θ̄0(2))

) = Eg
{−2�(θ0(1), θ̄0(2) | z)} .

Note that the null model overall PIKL discrepancy dPIKL(g, (θ0(1), θ̄0(2))) is fixed, as is
dKL(g, θ0) in the full null setting.
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To use the bootstrap to estimate the null and alternative discrepancies, we must apply
the plug-in principle to the pseudo-true parameter vector. The pseudo-true parameter
vector θ̄ minimizes the KL discrepancy under the true distribution g, so the bootstrap-
based version of θ̄ should minimize the empirical KL discrepancy −2�(θ | y). Therefore,
we use θ̂ as the plug-in for θ̄ . Accordingly, the bootstrap-based pseudo-true nuisance
parameters for the null and alternative models are θ̂0(2) and θ̂ (2), respectively. Let θ̂

∗
C(1) =

argmaxθ (1)
�((θ (1), θ̂ (2)) | y∗). The null model bootstrap-based PIKL discrepancy estimator

is thereby

dPIKL
(
ĝ, (θ0(1), θ̂0(2))

)
= −2�(θ0(1), θ̂0(2) | y),

and the alternative model bootstrap-based estimator is

dPIKL
(
ĝ, (θ̂

∗
C(1), θ̂ (2))

)
= −2�(θ̂

∗
C(1), θ̂ (2) | y).

The BDCP under the PIKL discrepancy is then

P∗
PIKL = Pr∗

[
dPIKL

(
ĝ, (θ0(1), θ̂0(2))

)
< dPIKL

(
ĝ, (θ̂

∗
C(1), θ̂ (2))

)]

= Pr∗
[
−2�(θ0(1), θ̂0(2) | y) < −2�(θ̂

∗
C(1), θ̂ (2) | y)

]
.

We now introduce some notation that is needed in the proof establishing that the BDCP
under the PIKL discrepancy approximates the LR p-value. Let the score vector based on
the entire parameter vector be

U(θ | y) = ∂�(θ | y)
∂θ

=
n∑
i=1

∂

∂θ
�i(θ | yi).

Let the elements of the score vector corresponding to the derivatives taken with respect to
the parameters of interest be denoted

U(1)(θ | y) = ∂�(θ (1), θ (2) | y)
∂θ (1)

=
n∑

i=1

∂

∂θ (1)
�i(θ (1), θ (2) | yi).

We also need to partition the observed and expected informations into components
consisting of the parameters of interest and nuisance parameters. For the observed infor-
mation, write

I(θ | y) =
(
I11(θ | y) I12(θ | y)
I21(θ | y) I22(θ | y)

)
.

Let the expected information be similarly partitioned:

I (θ) =
(

I11(θ) I12(θ)
I21(θ) I22(θ)

)
.

Proposition 3.2: Assuming that the large-sample properties of theMLEs hold, that the alter-
native model is adequately specified, and that the true parameter vector and the parameter
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vector under the null hypothesis lie in the interior of the parameter space, then for testing a
partial null hypothesis of H0 : θ (1) = θ0(1) versus the alternative of HA : θ (1) �= θ0(1),

pLR ≈ P∗
PIKL.

Proof: We begin by stating well-known results pertaining to score statistics that will be
applied later in the proof. First, recall that for large n, under certain regularity conditions
with the alternative model being adequately specified,

U(θ | y) .∼ NpA (0,I (θ)) .

Thus, the score vector for the parameters of interest also follows an approximate normal
distribution:

U(1)(θ | y) .∼ Nk (0,I11(θ)) .

The preceding result leads to

UT
(1)(θ | y)I −1

11 (θ)U(1)(θ | y) .∼ χ2
k . (11)

We now start by adding 2�(θ̂ (1), θ̂ (2) | y) to each side of the inequality that defines P∗
PIKL,

yielding

P∗
PIKL = Pr∗[−2�(θ0(1), θ̂0(2) | y) < −2�(θ̂

∗
C(1), θ̂ (2) | y)]

= Pr∗[2
(
�(θ̂ (1), θ̂ (2) | y) − �(θ0(1), θ̂0(2) | y)

)

< 2
(
�(θ̂ (1), θ̂ (2) | y) − �(θ̂

∗
C(1), θ̂ (2) | y)

)
]

= Pr∗
[
2
(
�(θ̂ (1), θ̂ (2) | y) − �(θ̂

∗
C(1), θ̂ (2) | y)

)
> L

]
. (12)

Thus, in order to complete the proof, we need to show that under Pr∗, the term on the
left-hand side of the inequality in (12) follows an approximate χ2

k distribution:

2
(
�(θ̂ (1), θ̂ (2) | y) − �(θ̂

∗
C(1), θ̂ (2) | y)

) .∼ χ2
k .

To establish this result, consider taking a second-order Taylor series expansion of
�(θ̂

∗
C(1), θ̂ (2) | y) around (θ̂ (1), θ̂ (2)). Write

�(θ̂
∗
C(1), θ̂ (2) | y) ≈ �(θ̂ (1), θ̂ (2) | y) − 1

2

(
θ̂

∗
C(1) − θ̂ (1)

)T
I11(θ̂ | y)

(
θ̂

∗
C(1) − θ̂ (1)

)
. (13)

Replacing the observed information with the expected information, approximation (13)
implies that

2
[
�(θ̂ (1), θ̂ (2) | y) − �(θ̂

∗
C(1), θ̂ (2) | y)

]
≈

(
θ̂

∗
C(1) − θ̂ (1)

)T
I11(θ̂)

(
θ̂

∗
C(1) − θ̂ (1)

)
. (14)

Applying a first-order Taylor series expansion of U(1)(θ̂
∗
C(1), θ̂ (2) | y∗) about (θ̂ (1), θ̂ (2))

leads to

U(1)(θ̂
∗
C(1), θ̂ (2) | y∗) ≈ U(1)(θ̂ (1), θ̂ (2) | y∗) − I11(θ̂ (1), θ̂ (2) | y∗)

(
θ̂

∗
C(1) − θ̂ (1)

)
.
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Based on the definition of the conditional MLE θ̂
∗
C(1), we have that U(1)(θ̂

∗
C(1), θ̂ (2) | y∗) =

0. Thus, we write

U(1)(θ̂ (1), θ̂ (2) | y∗) ≈ I11(θ̂ (1), θ̂ (2) | y∗)
(
θ̂

∗
C(1) − θ̂ (1)

)
. (15)

For large n, the bootstrap distribution of y∗ should mimic the sampling distribution of
y, thus leading to I11(θ̂ (1), θ̂ (2) | y∗) ≈ I11(θ̂ (1), θ̂ (2) | y). Also for large n, under certain
regularity conditions, we have that I11(θ̂ (1), θ̂ (2) | y) ≈ I11(θ̂ (1), θ̂ (2)). Therefore, under
these conditions, I11(θ̂ (1), θ̂ (2) | y∗) ≈ I11(θ̂ (1), θ̂ (2)). This approximation in combination
with (15) leads to

θ̂
∗
C(1) − θ̂ (1) ≈ I −1

11 (θ̂)U(1)(θ̂ | y∗). (16)

Result (16) implies that
(
θ̂

∗
C(1) − θ̂ (1)

)T
I11(θ̂)

(
θ̂

∗
C(1) − θ̂ (1)

)

≈ UT
(1)(θ̂ | y∗)

[
I −1

11 (θ̂)
]T

I11(θ̂)I −1
11 (θ̂)U(1)(θ̂ | y∗)

= UT
(1)(θ̂ | y∗)I −1

11 (θ̂)U(1)(θ̂ | y∗). (17)

Applying (11) to the bootstrapping context, we have

UT
(1)(θ̂ | y∗)I −1

11 (θ̂)U(1)(θ̂ | y∗) .∼ χ2
k . (18)

Combining (17) and (18), we see that
(
θ̂

∗
C(1) − θ̂ (1)

)T
I11(θ̂)

(
θ̂

∗
C(1) − θ̂ (1)

) .∼ χ2
k .

In conjunction with (14), the preceding distributional result yields the desired distribu-
tional result:

2
[
�(θ̂ (1), θ̂ (2) | y) − �(θ̂

∗
C(1), θ̂ (2) | y)

] .∼ χ2
k . (19)

Finally, applying (19) to the inequality involving P∗
PIKL displayed in (12) allows us to assert

P∗
PIKL = Pr∗

[
2
(
�(θ̂ (1), θ̂ (2) | y) − �(θ̂

∗
C(1), θ̂ (2) | y)

)
> L

]

≈ Pr[χ2
k > L]

= pLR. �

We have thus shown that the LR p-value can be approximated by a BDCP under an
appropriately chosen discrepancy, regardless of whether the null hypothesis pre-specifies
all parameter values. In this subsection, we focus on the PIKL discrepancy because its
BDCP provides an approximation to the LR p-value in the partial null setting. However,
we again note that the BDCP under the conventional KL discrepancy is also a valid tool
for choosing between two competing models in the partial null setting.

We have rigorously shown the connection between the LR p-value and the BDCP frame-
work. However, if an appropriate discrepancy measure is chosen, the connection between
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the BDCP and most asymptotic tests can also be formally established. In fact, in work not
shown, we have established this connection for the Wald and score test p-values. We focus
on the connection between the KL discrepancy and LR p-value because of their utility and
ubiquity. Evaluating the BDCP can be computationally expensive because it requires fitting
the null and alternative models across numerous bootstrap samples. Fortunately, by justi-
fying this connection between the p-value and the BDCP, one need not actually calculate
the BDCP in order to interpret the p-value in the prescribed manner.

At first glance, the overall PIKLdiscrepancymay seem convoluted because it depends on
the pseudo-true nuisance parameters, which are unknown. Thus, we cannot evaluate the
overall PIKL. However, we are also unable to evaluate the conventional overall KL discrep-
ancy, and thus the inability to evaluate the PIKL discrepancy causes no additional duress.
Instead, both the PIKL and KL discrepancies are easily estimated using the bootstrap. The
PIKL may also be appealing from a practical standpoint; if one is concerned with only the
parameters of interest, then setting the nuisance parameters to their best possible values, as
both the PIKL and its bootstrap-based estimator do, is reasonable. The PIKL discrepancy
and its estimator are also akin to a plug-in likelihood in which the nuisance parameter
vector is evaluated at its global MLE.

Various likelihood-based methods for contending with or eliminating nuisance param-
eters have been developed. One suchmethod is the integrated likelihood, in which the joint
likelihood of the parameters of interest and nuisance parameters L(θ (1), θ (2)) is integrated
with respect to the nuisance parameters θ (2). For a thorough treatment of integrated like-
lihood approaches, see [5]. For recommendations on which likelihood methods to use for
likelihood ratio testing in the presence of censored and missing data, see [4]. While the
integrated likelihood is a valuable alternative method of eliminating nuisance parameters,
because of our desire to draw a connection between the BDCP and the standard LR p-value,
we do not explore the integrated likelihood in this paper.

4. Simulation study

To further support the mathematical results showing the connection between the BDCP
and the LR p-value, we have also performed a simulation study. The simulation study
employs a factorial design composed of three factors. First, we consider both a linear and
a logistic regression modeling framework. Within both frameworks, we consider full and
partial null hypotheses. Finally, within each combination of modeling framework and type
of null, we examine a setting in which the null is adequately specified and another set-
ting in which the alternative is true and null is underspecified. Based on compiled results
not shown, the sample size n affects the quality of the approximations more in the true
alternative, false null setting than for an adequately specified null. Therefore, in the under-
specified null settings, we present results for 2 sample sizes, namely n = 100 and n = 1000,
and when the null is adequately specified, we present results for one sample size, n = 500.

In both the linear and logistic regression modeling frameworks, we draw independent
samples of size n of an outcome variable y, as well as corresponding covariates x1, x2 and
x3. In the linear regression setting, for i = 1, . . . , n, the generating model is of the form

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,
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where εi � N(0, σ 2). Similarly, in the logistic regression setting, for i = 1, . . . , n, the
observed data is generated as yi � bin(1,πi), where

log
(

πi

1 − πi

)
= β0 + β1xi1 + β2xi2 + β3xi3.

In both settings the distribution of the covariates is

⎛
⎝x1
x2
x3

⎞
⎠ � N3

⎛
⎝

⎛
⎝ 2

2
−2

⎞
⎠ ,

⎛
⎝100 64 64

64 100 64
64 64 100

⎞
⎠

⎞
⎠ .

In the linear regression setting, the alternative model always corresponds to the model
in which the parameter vector β = (β0,β1,β2,β3)

T is unrestricted. In each linear regres-
sion simulation, the true variance is σ 2 = 50. In the full null setting, the null model sets
β = 0. While not typically done in practice, in the full null setting, the null model must
provide a pre-specified value of σ 2, denoted by σ 2

0 . The pre-specified σ 2
0 varies across sim-

ulation sets. Thus, we can write the hypotheses for the full null linear regression setting
as H0 :

(
β

σ 2

)
=

(
0
σ 2
0

)
versus HA :

(
β

σ 2

)
�=

(
0
σ 2
0

)
. The partial null in the linear regres-

sion framework testsH0 :
(

β2
β3

)
= ( 0

0
)
versus the general alternative. Simulation sets differ

according to the values of the true parameter vector β = (β0,β1,β2,β3)
T.

Like the linear regression simulations, in the logistic regression setting, the alternative
model parameter vector β = (β0,β1,β2,β3)

T is unrestricted. In the logistic regression set-
ting, the full null tests H0 : β = 0 versus the general alternative. Also similar to the linear
regression setting, the partial null in the logistic regression setting corresponds to a test
of H0 :

(
β2
β3

)
= ( 0

0
)
versus the general alternative. Simulation sets vary according to the

values of the true parameter vector β .
Each set of simulation results is based on drawing 50 original samples. From each orig-

inal sample, we calculate the full and partial null LR test p-values. Based on B = 10, 000
bootstrap samples, we evaluate the BDCP under the KL discrepancy in the full null setting
and under the PIKL discrepancy in the partial null setting.

For each set of simulation results, we present a scatterplot with the corresponding p-
value on the x-axis and theBDCPon the y-axis. A 45 degree line running through the origin
is placed on each graph to aid in determining how close the BDCP is to its corresponding
p-value. Each graph will contain 50 ordered pairs, one for each of the original samples. For
each of the simulation results, we also present an estimate of the concordance correlation
coefficient (CCC), labeled ρ̂c, which is a numerical measure of how close a set of ordered
pairs falls to the line y = x [18]. The CCC is ameasure that lies between -1 and 1, inclusive,
with ρc = 1 indicating exact agreement.

All simulations, calculations and scatterplots were performed and created using R [25]
and RStudio [27].
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Figure 1. Scatterplots of BDCPs vs. their respective p-values in the linear regression setting with an
adequately specified null. Here, β0 = 0, σ 2 = 50 and n = 500.

Table 1. ρ̂c comparing P̂∗ to its respective p-value in the linear regression setting.

Null specification n β0 σ 2
0 Null Type Disc. ρ̂c

Adequate 500 0 50 full null KL 0.99878
Adequate 500 0 partial null PIKL 0.99884
Underspecified 100 0.175 60 full null KL 0.95098
Underspecified 100 0.175 partial null PIKL 0.99235
Underspecified 1000 0.05 55 full null KL 0.99590
Underspecified 1000 0.05 partial null PIKL 0.99910

Figure 2. Scatterplots of BDCPs vs. their respective p-values in the linear regression setting with an
underspecified null. Here, β0 = 0.175, σ 2 = 60 and n = 100.

4.1. Linear regression

Figure 1 presents the scatterplots comparing the BDCPs to their respective p-values in the
adequately specified null setting. The first two entries in the last column of Table 1 present
the CCC values comparing the BDCPs to their respective p-values.

In the underspecified null setting, wewish to avoid a scenario inwhichmost p-values are
very close to zero. To achieve this goal, as we increase the sample size, the absolute value of
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Figure 3. Scatterplots of BDCPs vs. their respective p-values in the linear regression setting with an
underspecified null. β0 = 0.05, σ 2 = 55 and n = 1000.

Figure 4. Scatterplots of BDCPs vs. their respective p-values in the logistic regression setting with an
adequately specified null. Here, β0 = 0, and n = 500.

the elements of the true parameter vector β must get smaller. With this in mind, for each
of the three sample sizes, we vary β as well as the pre-specified null variance ‘estimator’
σ 2
0 . For each sample size, samples are drawn from the generating distribution in which we

set β0 = −β1 = β2 = −β3, and σ 2 = 50. For n = 100, we set β0 = 0.175 and set the null
model variance estimator to σ 2

0 = 60; and for n = 1000, set β0 = 0.05 and σ 2
0 = 55.

Figure 2 presents scatterplots for the n = 100 setting; the n = 1000 setting is presented
in Figure 3. Table 1 presents the CCC values for these two settings.

4.2. Logistic regression

The logistic regression results are presented in a fashion similar to the linear regression
setting. In the adequately specified null setting β = 0. In the underspecified null setting,
we again set β0 = −β1 = β2 = −β3. When n = 100, we set β0 = 0.07; and for n = 1000,
β0 = 0.01. The scatterplots for the adequately specified null, where we set n = 500, are
presented in Figure 4. Figure 5 presents the scatterplots for the underspecified null with
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Figure 5. Scatterplots of BDCPs vs. their respective p-values in the logistic regression setting with an
underspecified null. Here, β0 = 0.07, and n = 100.

Figure 6. Scatterplots of BDCPs vs. their respective p-values in the logistic regression setting with an
underspecified null. Here, β0 = 0.01, and n = 1000.

Table 2. ρ̂c comparing P̂∗ to its respective p-value in the logistic regression setting.

Null Specification n β0 Null Type Disc. ρ̂c

Adequate 500 0 full null KL 0.99986
Adequate 500 0 partial null PIKL 0.99980
Underspecified 100 0.07 full null KL 0.83085
Underspecified 100 0.07 partial null PIKL 0.99352
Underspecified 1000 0.01 full null KL 0.99990
Underspecified 1000 0.01 partial null PIKL 0.99993

n = 100; and Figure 6 presents results for n = 1000. Table 2 gives the CCC values for each
of these combinations.

4.3. Interpretation of results

For both the linear and logistic regression modeling frameworks, Figures 1 and 4 support
that when the null model is adequately specified, the p-values are closely approximated by
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their respective BDCPs. This finding is especially strong in the logistic regression setting,
where most points on the scatterplot fall very close to the 45 degree line.

In the n = 100 underspecified null setting, as illustrated by Figures 2 and 5, the BDCPs
exhibit a considerable amount of positive bias for their respective p-values in both the linear
and logistic regression settings. The bias is more pronounced in the full null setting.

When we increase the sample size from n = 100 to n = 1000, the bias disappears.
Figure 3 for the linear regression setting and Figure 6 for the logistic regression setting
show that nearly all ordered pairs fall very close to the 45 degree line.

We find that the simulation results strongly support the mathematical findings that
connect the BDCPs to their respective p-values. For adequately specified null hypothe-
ses, the approximations hold quite well for moderate sample sizes. For underspecified null
hypotheses, the approximations improve as the sample size increases. This, however, is to
be expected because the proofs connecting the BDCPs to their p-values rely on large sample
theory.

5. Benefits of DCP / BDCP framework

In this section, we address two important contributions of this work. First, by drawing a
connection between the LR p-value and the BDCP, we can provide an alternative inter-
pretation of the p-value, from which we gain new insights regarding the behavior of the
p-value. Second, while we have shown a connection between the LR p-value and the BDCP
when hypothesis testing assumptions are met, the BDCP framework can be applied to a
considerably broader collection of settings than those in which the p-value is valid.

5.1. Insights gained fromBDCP / p-value connection

The standard interpretation of the p-value is arguably confusing and counterintuitive, espe-
cially to students or researchers who must use statistics in their work but who may not
specialize in the field. By drawing a connection between the LR p-value and the BDCP
whenhypothesis testing assumptions aremet, we allow for a perhapsmore intuitively pleas-
ing interpretation of the p-value. Instead of interpreting the LR p-value in the usualmanner,
we can instead interpret it as a reflection of the probability, based on the sample at hand,
that the fitted null model is closer to the ‘truth’ than the fitted alternative, where proximity
is based on a suitably chosen discrepancy. In other words, rather than assuming the null
is true and calculating a quantity that reflects the probability of what was observed under
this assumption, we can instead think of the LR p-value as a bootstrap-based probability
that the null is, in a certain sense, ‘better’ than the alternative, without the null having to
be strictly true. This interpretation offers a frequentist interpretation of the p-value that is
better aligned with assessing the probability of a hypothesis.

Providing a non-standard interpretation of the p-value also allows us to assess its behav-
ior in a different light. For instance, consider a setting in which a subtle effect yields a small
p-value due to a very large sample size. The standard interpretation of the p-value indicates
that the result is statistically significant even though it may not be of practical importance.
Viewing this phenomenon in the BDCP frameworkmay be beneficial. In choosing between
competingmodels based on the BDCP, concepts pertinent to statistical modeling naturally
arise. For instance, there is a bias-variability tradeoff that is inherent in statisticalmodeling;
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a larger model should be less biased, but at the cost of increased variability. A small BDCP
indicates that, for most bootstrap samples, the discrepancy tends to prefer the more com-
plex fitted alternative model to the simpler fitted null model, since the subtle effect can be
estimated with sufficient accuracy to justify its inclusion. Stated another way, the adverse
impact of the increased variability of the alternative model is outweighed by the impact
of the null model bias due to omitting a nonzero effect. This interpretation of the BDCP
may provide a clearer way of understanding the bias-variability tradeoff than the standard
interpretation of the p-value.

5.2. Broader utility of DCP / BDCP framework

Beyond the advantage of providing a new interpretation of the LR p-value, the BDCP
also has the strength that it can be applied in a broader collection of settings than
hypothesis testing. For instance, hypothesis testing requires the alternative model to be
adequately specified or else the corresponding p-value may be invalid. The BDCP, on
the other hand, provides a valid comparison of competing models, regardless of the
veracity of the alternative model (although the BDCP may not approximate the p-value
in this setting). Because the notion of either the null or alternative being true is hard
to defend in many practical settings, this advantage of the BDCP greatly enhances its
utility.

Hypothesis testing typically requires the null model to be nested within the larger alter-
native, but the BDCP under the KL and PIKL discrepancies does not require nestedmodels
in order to be valid. There are many settings in which we would like to compare nonnested
models. For instance, suppose we wish to compare a model that enters an effect linearly
and another that enters the effect as a categorical variable. Standard hypothesis testing can-
not be used to distinguish between these models, while the BDCP under the KL or PIKL
discrepancies can easily be used.

Formal hypothesis testing requires pre-planned hypotheses in order to control Type I
andType II error rates. However, in practice, hypothesis testing is often applied in instances
in which the data is used to make decisions regarding the selection of model and which
hypotheses to test. While standard hypothesis testing techniques will typically no longer
control for Type I and Type II error rates when applied in this manner, such hypothesis
tests can still provide useful information regarding the implausibility of the null hypoth-
esis. Nevertheless, in instances in which the hypotheses are not strictly pre-planned, a
model evaluation tool that is not associated with the formality of controlling error rates
may be preferable, because the use of such a tool could reduce the risk of incorrect inter-
pretations. The BDCP simply seeks to quantify which of two models is closer to the truth
and is therefore unconcerned with these long-term error rates. Accordingly, the BDCP is
well-suited for use in settings without pre-planned hypotheses because it may produce a
model evaluation which is less likely to be misconstrued than the evaluation provided by
the p-value.

The BDCP can be evaluated for any discrepancy in which the plug-in principle can be
applied. For instance, suppose wewere interested in assessing the sum of weighted absolute
deviations between a fitted model’s J-dimensional parameter vector θ̃ = (θ̃1, θ̃2, . . . , θ̃J)T

and the true parameter vector θ = (θ1, θ2, . . . , θJ)T. Then, for j = 1, . . . , J, we could
put forth a discrepancy based on the weighted sum of scaled absolute deviations
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(WAD), such as

dWAD(g, θ̃) =
J∑

j=1

wj|θ̃j − θj|√
ιjj(θ)

,

where ιjj(· | y) represents the (j, j)th element of the inverse expected information matrix,
and w1, . . . ,wJ are the user-defined weights. Let the estimated parameter vector using the
bootstrap sample be denoted θ̃

∗ = (θ̃∗
1 , θ̃

∗
2 , . . . , θ̃

∗
J )T, and let the estimated parameter vec-

tor under the general model be denoted θ̂ = (θ̂1, θ̂2, . . . , θ̂J)T. Then, applying the plug-in
principle, the bootstrap-based estimator of the WAD discrepancy is

dWAD(ĝ, θ̃
∗
) =

J∑
j=1

wj|θ̃∗
j − θ̂j|√

ijj(θ̂ | y)
,

where ijj(· | y) represents the (j, j)th element of the inverse observed information matrix.
To assess whether the null or alternative model has a smaller weighted sum of scaled

absolute deviations in a hypothesis testing framework would require developing distribu-
tional theory. However, distributional theory for absolute values is notoriously difficult,
and thus deriving a p-value to compare models on the basis of absolute deviations would
be challenging. Yet by applying the plug-in principle and drawing repeated bootstrap sam-
ples, one can easily evaluate the BDCP for this discrepancy. Importantly, the BDCP under
the WAD discrepancy need not approximate a known p-value. In Section 6.3 we calculate
the BDCP under the WAD discrepancy for a variety of weighting schemes.

In this paper we primarily focused on discrepancies whose BDCP approximates the
LR p-value, but practitioners do not need to confine their choice of discrepancy to this
small class. We believe that, regardless of the connection to the p-value, the BDCP can be
a valuable piece of information in choosing between two competing statistical models.

6. ACE/ARB and survival study

In this section, we apply our methodology to a biomedical application. The application
investigates the effects of certain blood pressure medications on the probability of one-
year survival in a high-risk Medicare cohort. The primary purpose of this application is to
show that the LR p-value is approximated by the BDCP under the PIKL discrepancy. We
also provide secondary results to illustrate that the BDCP can be applied in settings that
do not provide a connection with the p-value. Specifically, we first illustrate that the BDCP
can employ discrepancies that do not yield an approximation to the p-value. We then use
the BDCP to compare nonnested models, which standard hypothesis testing is unable to
do.

6.1. Overview

The present study seeks to determine the effects of angiotensin converting enzyme
inhibitors (ACEs) and angiotensin II receptor blockers (ARBs) on one-year survival for
a high-riskMedicare population, all of whom have suffered an acute myocardial infarction
(AMI). There exists some evidence supporting that ACEs and ARBs may be beneficial to
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patients who have suffered an AMI. For instance, Setoguchi et al. [29] found that the use of
ACE/ARBs helped explain a reduction in post-AMI patient mortality from 1995 to 2004.
Also, in a large clinical trial, known as The Survival and Ventricular Enlargement (SAVE)
study, Pfeffer et al. [24] found treating patients who recently suffered an AMI with capto-
pril, an ACE, led to a significantly decreased risk of mortality when compared to patients
receiving a placebo. However, the mean age for patients in that clinical trial is 59.4 years
(sd = 10.6), whereas the youngest a member of the present study’s cohort can be is 66,
and the mean age is 78.3 years (sd = 7.9). Thus, while the SAVE study presents strong evi-
dence that captopril decreases the risk ofmortality among a cohort of patients considerably
younger than the present study’s cohort, it is unable to definitively confirm that using an
ACE is beneficial to a more elderly, and perhaps sicker, patient cohort.

The cohort consists of 8,682 Medicare beneficiaries, all of whom suffered an AMI (an
inpatient stay with an ICD-9 diagnosis code of 410.x1) in 2007 or 2008. All patients were
also discharged alive from the hospital stay in which the AMI was diagnosed and survived
for at least 30 days post-discharge.

Unless a patient has a drug contraindication, medical practice dictates that patients suf-
fering an AMI should typically be placed on either an ACE or an ARB [22,30]. Despite the
medical recommendation, only 4,327 (49.8%) members of the cohort filled a prescription
for an ACE or ARB in the month following their discharge. A patient was considered an
ACE/ARB user if and only if he or she filled a prescription for an ACE/ARB within 30 days
of discharge. Note that in this study we do not differentiate between ACEs and ARBs; we
simply create an indicator of whether the patient filled a prescription for either of the drugs
in the 30 days post-discharge.

To help better understand the relationship between ACE/ARB use and survival, Table 3
presents a 2 × 2 table of ACE/ARB use and one-year survival. From Table 3, we deter-
mine that the unadjusted odds ratio comparing ACE/ARB use and one-year survival
is 1.686 (95% CI: (1.496, 1.900); p<0.0001). Thus, this perhaps naive analysis suggests
quite strongly that ACE/ARB use increases the probability of one-year survival. However,
this analysis is unable to account for the fact that patients who fill a prescription for an
ACE/ARB may be considerably different than patients who do not. The result may simply
be indicating that patients who receive an ACE/ARB are healthier on average and are thus
less likely to die. Therefore, rather than rely on unadjusted analyses, we instead employ
a multivariable logistic regression model to assess the relationship between ACE/ARB
use and one-year survival. The model will control for a variety of covariates, including
measures of patient demographics and socioeconomic status, measures of patient severity,
comorbidities, drugs taken before the AMI, procedures before and during the AMI stay,
drug contraindications, etc. To determine the importance of ACE/ARB use, we test the null
hypothesisH0 : β = 0 versus the general alternativeHA : β �= 0, where β is the parameter
corresponding to ACE/ARB use. The null model includes the control variables, and the
alternative model includes the same control variables and the ACE/ARB indicator.

6.2. Primary results

To further understand this application, consider that the adjusted odds ratio estimate com-
paring ACE/ARB use and one-year survival is 1.151 with a Wald-based 95% confidence
interval of (1.002, 1.322). Thus, at the 0.05 significance level, we find ACE/ARB use to
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Table 3. 2 × 2 table showing the relationship between
ACE/ARB use and one-year post-index discharge survival.
A patient was considered an ACE/ARB user if and only if
he or she filled a prescription for an ACE or ARB within 30
days of the index discharge date.

One-Year Survival

yes no

ACE/ARB yes 3814 513
Use no 3550 805

increase the probability of one-year survival, holding all other covariates constant. How-
ever, the adjusted result is considerably less significant (p = 0.0440) than the unadjusted
results (p < 0.0001). Also, the estimated effect size is smaller in the adjusted results, with
an estimated odds ratio of 1.151, whereas the unadjusted odds ratio estimate is 1.686. This
illustrates the general concept that, when using observational data, the effect of a treatment
may not be adequately characterized if we do not control for important covariates related
to the probability of receiving treatment.

For this application, the LR p-value is 0.0440, and the BDCPunder the PIKLdiscrepancy
is 0.0480. These results suggest that we can then interpret the LR p-value as a bootstrap-
based estimator of the probability that the fitted null model will have smaller overall PIKL
discrepancy than the fitted alternative. The idea of ACE/ARB use having no effect is not a
scientifically valid hypothesis, so rejection of the null adds little to the underlying science.
Instead, we may interpret the BDCP, and by its approximate equivalence the LR p-value,
as a low probability that the model that does not account for ACE/ARB use is better than
the alternative model that includes this predictor, without having to assume either candi-
date model precisely matches the truth. We can then conclude that the information from
the sample is enough to estimate the effect of ACE/ARB use on survival with sufficient
accuracy.

6.3. Secondary results

As previously mentioned, use of the BDCP need not be limited to discrepancies that
yield a connection with the p-value. To illustrate that the BDCP can be defined and esti-
mated for arbitrary discrepancies, we estimate the BDCP under the WAD discrepancy,
which is described in Section 5.2. The BDCP will again be comparing the null model,
which sets the ACE/ARB parameter to zero, and the alternativemodel, which estimates the
ACE/ARB parameter. The WAD discrepancy requires a user-specified weighting scheme,
so we apply a variety of weighting schemes to compare the two models. In each scheme,
the ACE/ARB parameter receives a certain weight w, with the remaining 1 − w weight
being distributed equally among the remaining 101 model parameters. We will let the
weight on the ACE/ARB parameter be w = 1, 0.50, 0.10, 0.05, 0.02 and 0.0098. The weight
of w = 0.0098 constitutes equal weighting across all model parameters. If a practitioner
is interested only in the ACE/ARB indicator, then assessing the null and alternative mod-
els with w = 1 is a reasonable choice. On the other hand, if one is interested in an overall
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Table 4. The BDCP under the WAD discrepancy for a variety of weighting schemes. The weighting
schemesplaceprobabilityw on theACE/ARBparameter anddistribute the remaining1−w equally across
the remaining parameters.

w 1 0.50 0.10 0.05 0.02 0.0098

P̂∗ 0.0504 0.0568 0.0824 0.1121 0.2630 0.2721

assessment of the model, without singling out any particular parameter, then calculating
the BDCP with w = 0.0098 is justified.

Table 4 displays the BDCPs under the WAD discrepancy with the given weighting
schemes. FromTable 4, first note that each BDCP is less than 0.50, indicating that the alter-
native model is preferred in a majority of bootstrap samples for each studied weighting
scheme. However, as the weight placed on the ACE/ARB indicator decreases, the corre-
sponding BDCP increases. In other words, the null model fares better when it is compared
across all parameters than when more weight is placed on its ‘estimator’ of the ACE/ARB
parameter. For instance, if we compare the models only on the basis of the ACE/ARB
parameter estimator (i.e. usingw = 1), then the null model is preferred in a small percent-
age (5.04%) of bootstrap samples. On the other hand, when each parameter receives equal
weighting, then the null model has a smaller discrepancy estimate in more than a quarter
(27.21%) of bootstrap samples. Thus, depending on howwe comparemodels, considerably
different model assessments are possible.

This result illustrates that the BDCP can be evaluated for discrepancies that do not
necessarily have a connection with the p-value. All that is required for use of the BDCP
is successful application of the plug-in principle, so users have wide latitude in choosing
appropriate context-specific discrepancies. While the connection between the BDCP and
the p-value is useful, practitioners may in certain instances prefer to use a discrepancy that
does not provide such an approximation.

Suppose now that rather than determining the effect of ACE/ARBs, we are instead inter-
ested in determining whether age should be entered linearly or categorically. Using the
same modeling framework as before, we compare two models that contain the same set
of predictors, except that the ‘null’ model enters age linearly, and the ‘alternative’ model
enters ages categorically, with categories of 66–70, 71–75, 76–80, 81–85 and over 85. Here,
the BDCP under the KL discrepancy is approximately 0.519, indicating no strong pref-
erence between the competing models. This analysis illustrates that the BDCP can easily
compare nonnested models, a comparison for which standard hypothesis testing cannot
be used.1

7. Concluding remarks

When evaluating models on the basis of discrepancy functions, we merely wish to know
which model is most congruous with the truth, without having to assume one of the can-
didate models is true. On the other hand, the paradigm for hypothesis testing typically
assumes one of two competingmodels is precisely true. Despite these differences in under-
lying philosophy, when the assumptions of hypothesis testing are met, we have shown
that a bootstrap-based discrepancy comparison probability estimator can approximate the
likelihood ratio (LR) p-value.
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The primary purpose of this paper is to introduce the discrepancy comparison probabil-
ity (DCP) and show that, under specifically formulated discrepancies, its bootstrap-based
estimator approximates the LR p-value. Because the bootstrap-basedDCP (BDCP) approx-
imates the LR p-value, our work does not alleviate many of the problems with or abuses
of the p-value. Instead, this methodology allows us to conceptualize the p-value in a dif-
ferent way. The alternative interpretation of the p-value that our work provides is better
aligned with assessing a specific type of probability on the null hypothesis, without having
to assume the null hypothesis matches the truth. Notably, one can interpret the p-value
in this alternate fashion, without having to evaluate the BDCP across numerous bootstrap
samples. We chose to focus on the relationship between the Kullback-Leibler discrepancy
and the LR test p-value.However, inwork not shown, we have also established a connection
between the BDCP and theWald and score test p-values using suitably defined discrepancy
measures.

While the principal goal of this paper is to connect the BDCP with the p-value, the
BDCP is more broadly applicable than hypothesis testing and the p-value. For instance,
to establish a connection between the BDCP and the p-value, we needed to assume that
the larger model was adequately specified. However, this assumption does not have to be
met in order for the BDCP to be valid. Also, unlike the p-value derived from standard
hypothesis testing, the BDCP under certain discrepancies can compare nonnestedmodels.
Further, while we have only considered the BDCP under a small number of discrepancies,
the methodology presented here can be implemented for any discrepancy in which the
plug-in principle can be applied. Finally, while the BDCP as it is formulated in this paper
can only compare two models, using bootstrap-based estimators of overall discrepancies
to delineate between models need not be limited to comparisons of only two, as illustrated
by the methodology presented in [21].

Note

1. The R software that was used to produce the results for the simulation study and the
application can be obtained by request from the first author, and is available on github at
https://github.com/briedle-lilly/bdcp.
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