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ABSTRACT
Normalization transformations have recently experienced a resur-
gence inpopularity in the eraofmachine learning, particularly indata
preprocessing. However, the classical methods that can be adapted
to cross-validation are not always effective. We introduce Ordered
Quantile (ORQ) normalization, a one-to-one transformation that is
designed to consistently and effectively transform a vector of arbi-
trary distribution into a vector that follows a normal (Gaussian) dis-
tribution. In the absence of ties, ORQ normalization is guaranteed
to produce normally distributed transformed data. Once trained,
an ORQ transformation can be readily and effectively applied to
new data. We compare the effectiveness of the ORQ technique with
other popular normalization methods in a simulation study where
the true data generating distributions are known. We find that ORQ
normalization is the only method that works consistently and effec-
tively, regardless of the underlying distribution. We also explore the
use of repeated cross-validation to identify the best normalizing
transformation when the true underlying distribution is unknown.
We apply our technique and other normalization methods via the
bestNormalize R package on a car pricing data set. We built
bestNormalize to evaluate the normalization efficacy of many
candidate transformations; the package is freely available via the
Comprehensive R Archive Network.
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1. Introduction

The normal (or Gaussian) distribution has laid the groundwork for countless statistical
methodological frameworks, not the least of which is classical linear regression. As such,
since Box and Cox introduced their seminal normalization transformation in 1964 [5],
statisticians and researchers alike have recognized the widespread application of mappings
that ‘Gaussianize’ data. Transforming data so that methods which require normality could
be applied circumvented the arguably more challenging problem of developing statistical
techniques that could accommodate non-normal data.
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One popular use of these transformations is to mediate the (sometimes problematic)
assumption of normality of the outcome, conditional on the covariates, in the setting
of classical linear regression. Due to the ubiquity of right-skewed outcomes, a common
approach to this problem is to simply to model the log of the outcome, but a more complex
transformation might be warranted. Over the years, many alternative (and arguably more
elegant) frameworks have been developed to relax the normality assumption: generalized
linear modeling, quantile regression, etc. Yet still, the practice of ‘beating the data to look
normal via some kind of normalizing transformation’ is still widely employed for its sim-
plicity. While perhaps not the most elegant solution to the problem, often this technique
works well as a quick and pragmatic solution.

In the era of high-dimensional data, another increasingly popular application of nor-
malization occurs in applied regression settings with highly skewed or irregular distri-
butions in some of the covariates. Such settings often yield high leverage points (and
thus possibly highly influential points), even when one centers and scales the covariates.
When examining interactions, these influential points can become especially problematic.
If a covariate has even one high-leverage value, each interaction with that covariate will
amplify the leverage of that point. Normalization of the covariates mitigates the leverage
and potential influence of these covariates to an extent, which in some cases will allow for
more robust model selection. As a result, popular model selection packages in R such as
caret andrecipeshave built-inmechanisms to normalize the covariates automatically
[11,13]. This method is called a ‘preprocessing’ technique [12], and it essentially forgoes
the assumption of linearity between the outcome and the covariate, opting instead for the
premise of a linear relationship between the outcome and the transformed value of the
covariate (which in many cases may be more plausible). Interestingly, Box and Tidwell
advised a similar approach in 1962 [6]. A large benefit of preprocessing in this manner is
that any transformations done prior to investigating the relationship between covariates
and the response will yield valid inferences – the process is unsupervised. Many meth-
ods exist that can determine optimal transformations of the covariates and the response
jointly, by minimizing some objective loss function. However, these supervised methods
(i.e. methods that are trained using both the response and the covariates) must account for
the tendency to overfit when making inferences [9].

Normalization transformations do not always provide an easy panacea. Since its intro-
duction, the Box-Cox transformation has had known weaknesses. Thus, many statisticians
have offered modifications and alternatives that work in more general cases. The Yeo-
Johnson transformation attempts to minimize the Kullback-Leibler divergence between
the normal distribution and the distribution of the transformed data [19]. The Lambert
WxF ‘Gaussianizing’ transformation is a similar approach that uses maximum likelihood
to estimate a parametric function that best normalizes a skewed or a heavy-tailed distri-
bution [7]. The Lambert technique is applicable under the assumption of the existence of
the first two moments; see [16]. Other examples of improvements and extensions of the
Box-Cox transformation can be found in [4,10,14].

Unfortunately, even many of these now popular parametric normalization methods
are neither consistent nor accurate; each parametric method relies on certain assump-
tions about the shape of the generating distribution. Thus, no method is guaranteed to
normalize a vector, and no method will always be the optimal. This is problematic, espe-
cially in situations without prior knowledge of the shape of the distribution (for instance,
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in high-dimensional regression settings where normalization needs to be automatic). Ide-
ally, a normalization procedure would be consistent and effective on any continuous data,
regardless of its generating distribution.

Many nonparametric normalization transformations purport to work well in cases
where parametric approaches fail. Numerous authors have contributed to this topic
already; see [3] for a comprehensive literature review on this subject. In fact, the first
instance of a rank-based nonparametric normalization technique that we could find
predates the Box-Cox transformation by over a decade; see [2,18]. However, most non-
parametric techniques are limited to the observed range of the data, and this presents a
substantive problem for the application of normalization techniques in the era of cross-
validation and bootstrapping. In order for a transformation to be useful in such contexts,
the technique should be easily trained on arbitrary subsets of the data and seamlessly
applied to new data. Ideally, the normalization would not only be defined outside the
bounds of the training data, but effective in its treatment of new data.

Based on this impetus, we introduce the Ordered Quantile (ORQ) normalization tech-
nique. ORQ is fundamentally based on a rank mapping of the observed data to the
normal distribution, which guarantees normally distributed transformed data when ties
are not present. Like all other normalization transformations, the ORQ transformation
is reversible (i.e. one-to-one), which allows for straightforward interpretation; any anal-
ysis performed on the normalized data can be interpreted using the original units. (We
illustrate this property in a subsequent application.) ORQ normalization combines this
rank-mapping with a shifted logit approximation that allows the transformation to work
effectively on data outside the original domain.

In this paper, we will compare and contrast the performance of the ORQ normalization
transformation to that of Box-Cox, Lambert WxF of type s, Lambert WxF of type h, and
Yeo-Johnson. In Section 2, we formally introduce Ordered Quantile normalization and
explain its underlying intuition. In Section 3, we present simulations that show how and
when ORQ normalization will be useful compared to these other methods. In Section 4,
we apply QRQ normalization in a ‘transform-both-sides’ regression context and compare
the results to those produced by generalized additive models and ordinary least squares,
primarily focusing on predictive efficacy.

2. The ordered quantile normalization technique

The ORQ normalization procedure is a semiparametric approach that uses the original
values of a sample, the corresponding ranks, interpolation, and nonlinear extrapolation
in order to estimate a normalizing transformation function that can readily be applied to
new data. The first step is a simple rank-mapping from the empirical distribution function
for the original sample to the normal distribution function; the observed data is thereby
forced to follow a normal distribution. For data outside the domain of the original data, a
nonlinear parametric model extrapolates the transformation. New data that fall within the
domain of the original data are transformed via interpolation.

More formally, let x refer to the original data, a vector of length n, and let z refer to the
ranks of x (conformably ordered). Let xi and zi refer to individual values within the vector
z, indexed by i. Also, let x∗ refer to a new observation that may or may not be represented
among the original x.
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We define f (xi) = �−1((zi − 1/2)/n); a slightly modified version of the rank-based
mapping found in [18]. Noting that ((zi − 1/2)/n) provides an estimated percentile of xi,
one can interpret f (xi) as the inverse normal distribution function evaluated at the esti-
mated percentile of xi. We will henceforth denote the sample percentile as ((zi − 1/2)/n)
as pi, where pi ∈ (0, 1). We will use πi to denote the corresponding population percentile.

Note that f (a) is only defined when a is an already observed value, i.e. a ∈ x. Finally, let
xl = max{a ∈ x | a < x∗} and xu = min{a ∈ x | a > x∗}; in other words, xl, xu refer to the
closest points to x∗ that appeared in the original data x.

The ORQ normalization transformation is defined as follows:

g(x∗ | x) =

⎧⎪⎪⎨
⎪⎪⎩
f (x∗) if x∗ ∈ {x}
f (xu) − f (xl)

xu − xl
if x∗ /∈ {x} and min x < x∗ < max x

r(x∗; x) if x∗ < min x or x∗ > max x

Here r(x∗; x) is an extrapolation function that will be subsequently defined.
The function r(x∗; x) is determined first by fitting a generalized (logit-link) linearmodel

with parameters β0,β1 of the following structure:

logit (πi) = β0 + β1xi

To fit this model, we employ an objective function based on the form of the log-likelihood
for a logistic regression model arising from the binomial distribution:

n∑
i=1

[
(pin) (β0 + β1xi) − n log

(
1 + exp (β0 + β1xi)

)]
.

At first appearance, the preceding is a strange model: here, the logit of the population
percentile corresponding to the original xi is characterized by a linear form with xi as
the lone covariate. However, though the model may not provide a good fit for the data
at hand, we have found that it provides a robust mechanism for estimating quantiles for
values outside the original domain of x, as will be seen in subsequent simulations.

With this fitted model, we then use the estimate (β̂0, β̂1) to inform the ORQ extrapola-
tions. If we let

l(a) = �−1

(
exp(β̂0 + β̂1a)

1 + exp(β̂0 + β̂1a)

)

refer to the normal quantile of the model’s prediction for a quantity a, we can then define
r(x∗; x) as

r(x∗; x) =
{
l(x∗) + mini[f (xi)] − mini[l(xi)] if x∗ < min x
l(x∗) + maxi[f (xi)] − maxi[l(xi)] if x∗ > max x

The preceding yields the ‘shifted’ logit approximation of the nonparametric transfor-
mation of the original data. The shift ensures that the transformation is smooth and
one-to-one where the extrapolation function meets the original domain. The logit trans-
formation increases the robustness of the transformation for new data points that must be
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Figure 1. A visualization of ordered quantile normalization applied to petal length in Fisher’s ‘iris’ data
set.

extrapolated. As a side note, we also explored using a shifted linear extrapolation on the
transformed values, but this was found to be highly inaccurate in cases where generating
distributions had sufficiently heavy tails, such as the Cauchy distribution. The shifted logit
approximation, applied to the percentiles, mitigates the effect of these extreme observa-
tions. By using every observation’s rank in the estimation of the extrapolation function, the
extrapolation becomes more robust to the variability present at the bounds of the domain.

Overall, the ORQ transformation can be viewed as semiparametric; it is nonparamet-
ric along the original domain of x, but it is parametric outside the original domain of x.
However, the parametric component is constructed using the nonparametric component,
in some sense ‘borrowing strength’ from it. Similar to other rank-based procedures, some
information gets lost during the transformation process.

ORQ normalization is visualized in Figure 1 via Fisher’s ‘iris’ data set. The top plot
shows the transformation for the ‘petal length’ variable. Outside the bounds of the original
domain of x (in this case, x∗ /∈ [1, 6.9]), we observe the extrapolation function r(x∗; x) as
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a shift in the dotted line, which arises via the aforementioned logit model. Figure 1 also
displays the normal Q-Q plots for the data both before and after the ORQ transformation.

The effect of uncertainty in the parametric component’s approximation will typically be
minimal since we do not expect to see many observations outside the observed range if the
sample size is large enough (unless the tails of the distribution are very heavy). It should be
noted that the ORQ technique will not guarantee normally transformed data in the pres-
ence of ties, but it could still yield the best normalizing transformation when compared
to other alternatives. When a data vector has a large number of ties, normalization trans-
formations (that are also one-to-one) cannot be effective since the transformed vector will
also have a large number of ties.

TheORQ transformation can also be conceptualized as an approximation of a ‘true’ nor-
malizing function. If X follows any distribution that has a transformation h(X) such that
h(X) ∼ N(0, 1), then theORQ transformation provides an approximation to h given a real-
ized sample x. This means that if a vector is right-skewed such that a log transformation
truly normalizes it, then the ORQ transformation will approximate a log transformation.
Similarly, if a vector is left-skewed such that an exponential transformation truly normal-
izes it, the ORQ transformation will approximate the exponential transformation. In fact,
if any normalizing transformation function exists, the ORQ transformation will approximate
the function. The approximation will improve as the amount of data used in the training of
the transformation increases.

3. Simulations

In this section, we investigate the properties of various normalization transformation tech-
niques when applied to various originating distributions. Specifically, we generate data
from the following distributions:

x1 ∼ �(1, 1)

x2 ∼ 100 − �(1, 1)

x3 ∼ N(10, 1) + Bernoulli (.5) ∗ N(20, 1)

x4 ∼ p ∗ N(100, .25) + (1 − p) ∗ N(100, 16)where p ∼ Bernoulli(.8)

x5 ∼ Cauchy (location = 1000)

This set of generating distributions is quite broad (see Figure 2); x1 is right skewed, x2 is
left-skewed, x3 is bimodal, x4 is a heavy-tailed mixture of normal variables, and x5 is a
very heavy-tailed Cauchy distribution. The distributions are all shifted towards the posi-
tive domain, as the Box-Cox technique requires positive data. Although it is worth noting
that positivity is an inherent limitation of the Box-Cox, shifting these distributions at least
provides all of the techniques with a level playing field.

In order to determine the efficacy of the normalization transformations, we will use
a variant of the Pearson’s goodness-of-fit test statistic divided by the statistic’s degrees of
freedom [8]. This particular test statistic P follows a chi-squared distribution under the
null hypothesis of normality.We divide P by its degrees of freedom to ensure that the result
is interpretable; values close to one are ideal in that they show the least evidence of lack of
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Figure 2. Candidate generating distributions (left), in-sample ORQ transformed values (center), and
out-of-sample ORQ transformed values (right), with n= 10,000 in both training and testing samples.

normality. Moreover, as the data of interest become increasingly non-normal, P/df grows
accordingly.

Table 1 shows the average in-sample P/df statistic for normalization transformations for
n=1,000 observations of each candidate distribution and across S=10,000 simulations.
Curiously, ORQnormalization appears to be doing toowell in these transformations – ren-
dering the results somewhat suspicious. This is essentially because the method is ‘cheating’
– the transformed data are set to their exact theoretical normal quantiles. The nature of
our transformation forces the Pearson’s normalization test statistic to be even less than one
would expect under the null, as we have also stripped away any random deviations that
would be inherent under the null hypothesis of normality.
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Table 1. In-sample transformation efficacy measured by P/df on the original samples (n= 1,000) after
transformation. Values close to one indicate normally transformed data.

Right-skewed Left-skewed Bimodal Normal Mixture Cauchy

Box-Cox 1.05 23.08 51.01 339.90 367.45
Lambert S 1.24 1.24 51.57 340.26 307.50
Lambert H 22.93 22.92 53.24 9.92 1.13
Yeo-Johnson 4.78 21.15 51.09 339.79 498.53
ORQ 0.01 0.01 0.01 0.01 0.01

A better platform for comparison would be to investigate how well the normalization
works on newly observed data, which is exhibited in the subsequent tables. In Table 1,
we also see that barring ORQ, no transformation works well for every type of originating
distribution, even for the in-sample data.

Since comparing ORQ to other normalization transformations on in-sample metrics is
unfair, Table 2 illustrates the transformation efficacy on newly generated data points for
multiple sizes of training and test sets (the size of the test set is set to one tenth the size of
the training set). Table 2 presents the average P/df statistic taken across 10,000 simulated
test and training sets. For n=10,000, we observe very similar results as Table 1 except for
ORQ, which still performs very well but not suspiciously so. In fact, ORQ performs well
on every candidate distribution, including the bimodal and the normal mixture distribu-
tions, which every other transformation function failed to normalize. Figure 2 displays a
generated sample of size 10,000 from each distribution, their in-sample ORQ normalized
values, and ORQ transformations of a newly generated sample of size 10,000.

As the sample size of the training set (and the test set) decreases, the ORQ transforma-
tion performs slightly worse as its approximation to the true normalizing transformation
becomes less precise. This pattern indicates that as the sample size increases, the ORQ
transformation will be more and more accurate and effective in producing a successful
normalizing transformation for each of these distributions. The same pattern was found
for each transformation that was effective for a particular distribution; as the sample size
increases, the Lambert S transformation generally worked better for skewed distributions,
the Lambert H transformation worked increasingly well for the Cauchy distribution, and
the Box-Cox transformation worked increasingly well for the right-skewed generating dis-
tribution. Curiously, in situations where a transformation was not effective, higher sample
sizes seem to reduce its efficacy.However, this phenomenon is due to the increased power of
the Pearson test, and is not necessarily attributable to a worsening transformation in these
settings; as the number of observations in the test set increases, departures from normality
are going to increasingly push the P/df statistic away from 1, regardless of the estimation
accuracy of the transformation itself.

We know that in-sample estimates are biased in favor of the ORQ normalization, but
how are we to correct for this when the true distribution is unknown?We can use repeated
cross-validation (CV) in this circumstance. Specifically, we split the data into k folds, then
for each fold j we iteratively fit each normalizing transformation using the other k−1 folds
as a training set. We then calculate the Pearson’s P/df for the transformed data in fold j,
and repeat for all other j in k, taking the mean value as the best estimate of the transforma-
tion efficacy. Finally, we repeat this process r times to lessen the impact of the randomness
in the partitioning of the folds, taking the mean across repeats as the final estimate of
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Table 2. Out-of-sample transformation efficacy measured by P/df on newly gen-
erated samples for various sample sizes. The size of the test data is one tenth that
of the training data. Values close to 1 indicate normally transformed data.

Right-skewed Left-skewed Bimodal Normal Mixture Cauchy

n= 50
Box-Cox 1.59 2.20 3.30 4.76 3.11
Lambert S 1.57 1.58 3.22 4.54 2.68
Lambert H 2.10 2.08 3.33 1.83 1.68
Yeo-Johnson 1.66 2.15 3.30 4.79 3.66
ORQ 1.71 1.74 1.72 1.80 1.88

n= 100
Box-Cox 1.16 2.15 3.62 7.11 3.76
Lambert S 1.16 1.16 3.60 7.10 3.21
Lambert H 2.03 2.01 3.67 1.46 1.23
Yeo-Johnson 1.22 2.09 3.63 7.12 4.39
ORQ 1.28 1.29 1.29 1.30 1.37

n= 1000
Box-Cox 1.04 6.14 13.76 58.12 34.66
Lambert S 1.06 1.05 13.94 58.23 30.62
Lambert H 5.21 5.19 14.20 2.63 1.08
Yeo-Johnson 1.45 5.77 13.81 58.10 45.57
ORQ 1.13 1.12 1.13 1.13 1.13

n= 10,000
Box-Cox 1.07 23.13 51.07 346.00 433.92
Lambert S 1.24 1.24 51.60 345.88 402.67
Lambert H 22.67 22.71 53.28 9.78 1.08
Yeo-Johnson 4.82 21.20 51.15 346.00 462.30
ORQ 1.11 1.11 1.10 1.11 1.10

out-of-sample P/df. If the number of folds is selected such that the test/training ratio is
close to what it is for a given problem, then the estimate of Pearson’s P/df should be close
to the true value. However, the accuracy of the ORQ transformation depends to an extent
on the sample size used to train it, so cross-validation will underestimate the true efficacy
of ORQ normalization compared to when it has been trained using the full sample (i.e. the
CV estimated P/df statistic will tend to be higher than its value would be if ORQ had been
trained using the whole sample).

In order to show that this CVmethod is effective whether or not the true generating dis-
tribution is known, in Table 3 we present results from a hybrid of the prior simulations and
the application in the next section. The sample size for this simulation is set to 6,283, which
is the same as the sample size in the application. We use five-fold cross-validation with

Table 3. Estimated out-of-sample normalization efficacy using five-fold cross-validation with five
repeats (n= 6,283). Car price is included to show this method can be effective even when the true
generating distribution is unknown; see Section 4 for more details.

Right-skewed Left-skewed Bimodal Normal Mixture Cauchy Car Price

Box-Cox 1.21 25.58 58.35 423.65 381.27 4.00
Lambert S 1.48 1.32 59.80 424.68 269.29 4.02
Lambert H 25.75 24.30 60.61 10.77 1.08 5.80
Yeo-Johnson 5.74 24.89 58.42 423.79 481.33 4.00
ORQ 1.30 1.21 1.28 1.19 1.15 1.26
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five repeats to estimate the normalization efficacy of our candidate distributions (generat-
ing distributions we know), as well as ‘car price’ (a generating distribution that we do not
know). By comparing the results fromTables 3 and 2, we find that repeated cross-validation
yields the same out-of-sample efficacy results as we would see if we gathered a genuine
new sample. This means that although we do not know the true generating model for car
price, we can be confident that these efficacy statistics are representative of out-of-sample
performance.

4. Application

Theautotrader data set was scraped from theAutotrader website for inclusionwith the
bestNormalize package [15]. The variables include car mileage, price, and age (as well
as model and make). We apply the bestNormalize package functionality, along with
the ORQ transformation, to normalize mileage, age, and price. Finally, we build a pricing
model using these transformed data.

4.1. The bestNormalize package

We produced the bestNormalize R package for several reasons. First, it facilitates
the use of ORQ normalization as well as other transformations. Second, we have found
that applied statistical problems frequently involve the need to normalize variables, but it
can be difficult to assess a wide range of normalization techniques. Moreover, it is often
unclear how to test the methods against one another; many practitioners will opt for
the first method they uncover that seems to work. The bestNormalize framework
allows users to easily compare the extra-sample normalization efficacy of many different
candidate functions. With one line of code, users can investigate the Box-Cox, the Yeo-
Johnson, the LambertWxF, andORQ transformations, as well as othermore parsimonious
transformations such as log, exponential, square-root, and hyperbolic arc sine.

The bestNormalize R package is completely open source and is freely available on
GitHub and CRAN. A detailed tutorial is available in the form of a package vignette on the
CRAN website.

4.2. Estimating transformation functions for car price, mileage, and age

As evident in Figure 3, car price, mileage, and age are all highly right skewed. Furthermore,
all three variables have ties in their distributions, which further complicates normalization.
Using bestNormalize, we can test multiple possible transformations for normaliza-
tion efficacy. In Table 4, we use five-fold cross-validation with five repeats to estimate the
normalization efficacy for a set of transformations.

We see that the estimated normality statistics for the ORQ transformation are close to
one for both price and mileage, despite the presence of ties in the data set. ORQ is per-
forming considerably better than all of the other candidate transformations. Interestingly,
a square-root transformation performed almost as well in normalizing car price as did the
Box-Cox, Yeo-Johnson, or Lambert S transformations.

However, age was not very well normalized by any candidate transformation. Age has
manymore ties than price andmileage, and thismakes it very difficult to find a normalizing
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Figure 3. Distributions of pre- and post- ORQ transformations of car price, mileage, and age.

transformation (see Figure 3). Even so, the ORQ transformation has the lowest estimated
P/df statistic.

4.3. Fitting amodel on the transformed data

With the normally distributed transformed data, we can fit a linear model using the
transformed values of each variable. This process is referred to as ‘transform-both-sides’
regression. We will then be able to use the reverse transformations to assess the rela-
tionships among the variables in terms of their original units. There are some purported
benefits of this type of modeling approach; see [9]. Specifically, in many applications, a
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Table 4. Estimated extra-sample normalization statistics
for autotrader data (five folds, five repeats).

Price Mileage Age

Arc-Sinh 6.64 4.56 170.63
Box-Cox 4.04 4.11 170.72
Lambert H 6.16 20.93 172.08
Lambert S 4.11 4.12 169.39
Log 6.64 4.55 170.25
No Transform 6.59 22.09 171.56
ORQ 1.27 1.15 167.83
Square-root 4.21 7.14 170.60
Yeo-Johnson 4.04 4.11 171.87

simplemarginal normalization for both the outcome and the covariates will lead to approx-
imate normality of the residuals. Assuming that the residuals are also uncorrelated and
homoscedastic, the actual coverage of confidence and prediction intervals should be close
to the nominal level.

We will investigate the results from the transform-both-sides (TBS) regression com-
pared to alternative modeling strategies in the next section.

It should be noted that with the ORQ transformation, there is no universally appropri-
ate interpretation of the coefficients on the covariates, since the transformation function
itself will be characteristically different for various (generating) distributions. Furthermore,
when the ORQ transformation is employed, the scale of the original units is not preserved;
only the ordering of the observations is preserved. However, the reverse ORQ transfor-
mation can easily be applied, allowing us to characterize covariate effects on the scale of
the original units. While such an approach does not yield an interpretation of the fitted
model’s specific coefficient estimates, it does provide a sense of the shape of the relation-
ship between covariates and the outcome. In a sense, the setting is akin to that of fitting a
generalized additive model (GAM), where it is difficult to interpret each coefficient, and a
picture is worth a thousand words.

Thus, in order to adequately interpret the model, we produce plots of the predictions
across all of the observed values of each covariate. For the sake of illustration, we also plot
the predictions resulting from fitting a generalized additive model and a simple ordinary
least squares model (Figure 4). We see that both mileage and age decrease the predicted
car price (which is unsurprising). The magnitude of the effect is highest for low values of
mileage and age, and smallest on high values. Interestingly, the effect of mileage on price
in the GAM is not monotonic; the price is expected to increase past 200,000 miles. This
is odd, but understandable in the context of influential points (e.g. there was a 2012 GMC
Sierra with 325,000 miles listed for sale at $24,900).

4.4. Comparingmodels

In order to compare the TBS regression with the GAM and the OLS model, we investigate
the leave-one-out predictions and their corresponding prediction intervals. Specifically, for
each car listing in the data set, all of the ORQ transformations were re-trained without that
observation, as were the TBS, GAM, and OLS models. Then, each model was used to pre-
dict the omitted car price and to derive a corresponding prediction interval.We considered
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Figure 4. Effects of mileage (top) and age (bottom) on car price for generalized additive models
(GAM), ordinary least squares (OLS) models, and transform-both-sides (TBS) regression, where the ORQ
transformation is used on car price, mileage, and age.

prediction intervals withmultiple levels of coverage (see Figure 5 and Table 5). The predic-
tion intervals for the TBS model had observed coverage that was much closer to nominal
compared to the other two methods, which were too conservative. This suggests that the
residuals for the TBS model were closer to normally distributed than the residuals for the
other two methods; indeed, this is what we observe to be empirically evident. In the full
TBS model, the P/df statistic for the residuals is 10.5, compared to 21.5 and 22.2 for the
GAM and OLS fits, respectively. We also find that the mean prediction interval (PI) length
was lowest for the TBS model for all levels of coverage. In other words, the TBS model
yields more precise prediction than the other two methods.

Note that the reduction in the length of the prediction intervals for TBS models is
not similar for different levels of the covariates. In the TBS model, newer cars (and those
with less mileage) have wider prediction intervals than for older, higher-mileage cars. This
reflects the right-skewed nature of the originating distribution of price; we should expect
pricier cars to have greater variability.
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Figure 5. Prediction interval length (top) and coverage (bottom) in generalized additive models (GAM)
and ordinary least squares (OLS) models compared to transform-both-sides (TBS) regression, where the
ORQ transformation is used on the outcome and the covariates. Intervals were calculated and evaluated
with leave-one-out cross-validation.

Table 5. Prediction interval (PI) performance for transform-both-sides (TBS) regression, compared to
generalized additive models (GAM) and ordinary least squares (OLS). Intervals were calculated and
evaluated with leave-one-out cross-validation.

Empirical Coverage Mean PI Length

Nominal Level (%) ($1000)

(%) TBS GAM OLS TBS GAM OLS

75 75.2 81.9 82.6 14.3 15.5 15.6
80 80.6 86.2 86.5 16.0 17.3 17.4
85 86.0 89.8 89.6 18.1 19.4 19.6
90 90.9 92.5 92.6 20.9 22.2 22.4
95 95.4 95.3 95.4 25.4 26.5 26.7
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5. Discussion

We have found the ORQ transformation to be a remarkably effective normalization tech-
nique. For any candidate generating distribution, the ORQ transformation will approxi-
mate the best normalizing transformation (if one exists). We applied ORQ normalization
in the context of ‘transform-both-sides’ regression in order to predict the price of a car
based on its mileage and age. Through this approach, we were able to reduce the width
of the prediction intervals while retaining close to nominal coverage, obtaining superior
results compared to those arising from generalized additive and ordinary least squares fits.

We envision several avenues of future extensions to this work. As we noted in the
introduction, it may be worthwhile to use such a normalization procedure as a means
of automatically preprocessing features in a model selection context in order to reduce
the leverage of potentially influential points among candidate predictors. In this context,
one can pair the ORQ transformation with a robust procedure for assessing departures
from normality, such as the methods proposed in [17]; variables could be screened as to
whether or not a transformation is merited in the first place, and only those judged to be
sufficiently non-normal would undergo a transformation. Additionally, while we inves-
tigated several possible generating distributions, futher exploration of the efficacy of the
ORQ transformation could be performed using the p-outliers model proposed originally
in [1].

Finally, we produced and utilized the bestNormalize R package, which can per-
form ORQ normalization and compare its out-of-sample performance to a suite of other
candidate normalization techniques.
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