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a b s t r a c t 

Motivated by population-based geocoded data for Iowa stillbirths and live births deliv- 

ered during 2005–2011, we sought to identify spatio-temporal variation of stillbirth risk. 

Our high-quality data consisting of point locations of these delivery events allows use 

of a Bayesian Poisson point process approach to evaluate the spatial pattern of events. 

With this large epidemiologic dataset, we implemented the integrated nested Laplace ap- 

proximation (INLA) to fit the conditional formulation of the point process via a Bayesian 

hierarchical model and empirically showed that INLA, compared to Markov chain Monte 

Carlo (MCMC) sampling, is an attractive approach. Furthermore, we modeled the tempo- 

ral variability in stillbirth to better understand how stillbirths are geographically linked 

over the seven-year study period and demonstrate the similarity between the conditional 

formulation of the spatio-temporal model and a log Gaussian Cox process governed by 

discrete space-time random fields. After controlling for important features of the data, the 

Bayesian temporal relative risk maps identified areas of increasing and decreasing still- 

birth risk over the birth period, which may warrant further public health investigation in 

the regions identified. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In Iowa, a stillbirth is defined as a fetal death with a

gestational weight ≥ 350 g or a gestation age of ≥ 20

weeks. The estimated prevalence for stillbirth in Iowa is

about one in 180 pregnancies compared to the U.S. esti-

mate of one in 160 pregnancies ( NICHD, 2017 ). We seek

to learn more about where and when stillbirths are oc-

curring by examining both the spatial and temporal pat-

terns in stillbirths. The location of a stillbirth can be

represented by the maternal residence at the time of

delivery. The Iowa Registry for Congenital and Inherited

Disorders (IRCID) has been actively monitoring stillbirth
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deliveries statewide since 2005 ( Romitti, 2015 ). For the

birth period 2005–2011, the maternal residence at delivery

for each stillbirth and live birth delivered to an Iowa resi-

dent was geocoded and the corresponding date of delivery

recorded. The combined data for individual stillbirth events

across a specified study period can form a point map of

events within a spatial and temporal region. With our rich

source of geocoded data, we aim to model the spatial and

temporal patterns in stillbirth to learn more about how the

spatial and temporal patterns have changed and how risk

factors might be related to these changes. 

During the seven-year study period, the ratio of the

number of stillbirth to live birth events was 0.0044, or

0.44%; pregnancies with multiple fetuses were excluded.

Because little is known about the underlying mecha-

nism driving the spatial distribution of stillbirth events

and with the relatively precise geocoded data available, a
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point process modeling approach was initially applied to 

these population-based surveillance data to quantify ex- 

cess stillbirth risk ( Zahrieh et al., 2018 ). The point pro- 

cess method allowed for analysis of multiple births by the 

same mother in independent pregnancies via a maternal 

contextual effect; this effect was a random factorial effect 

whereby stillbirth events experienced by the same mother 

from independent pregnancies were grouped so that the 

events within a group shared the same random effect. The 

methodologic approach adopted for our previous analysis 

identified and quantified several geographic regions of ex- 

cess stillbirth risk beyond the underlying at-risk popula- 

tion (i.e. maternal residence at delivery of each live birth). 

Because our starting point focused on modeling the spa- 

tial distribution of stillbirth events, we did not take into 

account the timing of the events. Furthermore, a limita- 

tion of the initial methodologic approach was that it could 

not incorporate covariate information attached to the live 

births. In the current data analysis, we apply an appealing 

approach that can analytically address both of these insuf- 

ficiencies. 

To our knowledge, risk factor studies for stillbirth have 

predominantly been from population-based case-control 

studies ( Flenady et al., 2011 , provide a systematic review), 

with a few studies incorporating minimal geospatial infor- 

mation into data analyses (for example, DeFranco et al., 

2015; Hall et al., 2014 ). Logistic regression was the corre- 

sponding analytic method used to estimate associations in 

these studies; that is, the outcome events (stillbirth versus 

live birth) at observed spatial locations were modeled as 

conditionally independent binomial outcomes, but the spa- 

tial and temporal variation inherent in the locations and 

timing of the events within the study-specific and tempo- 

ral region were ignored. Statistical methods that take the 

spatial arrangement of maternal residence and timing of 

the deliveries into account can potentially provide addi- 

tional insights into antecedents that contribute to stillbirth 

occurrence. 

In this paper, we use a conditional formulation of the 

point process via a Bayesian hierarchical model to view 

the joint realization of stillbirths and live births and, 

conditional on this realization, examine the probability 

that the binary label on a point is either a stillbirth or live 

birth. The spatial dependence addresses the labeling (de- 

livery event), rather than the event locations themselves 

and simplifies analysis and interpretation compared with 

modeling maternal residence directly via a point process 

model. Importantly, with the conditional formulation 

of the point process we can now incorporate covariate 

information attached to both stillbirth and live birth. Our 

approach extends the conditional formulation of a Bayesian 

point process model to include both spatial and temporal 

effects and to study empirically the recovery of spatial and 

temporal model components in this framework. We note 

that adding time (i.e., delivery date) to the investigation 

may be critical with respect to adequate understanding 

of how maternal residences are geographically linked. 

Furthermore, for most epidemiologic applications, the 

relations of individual level outcomes to individual level 

predictors are examined, and a compelling argument can 

be made to consider spatial and temporal effects as con- 
textual effects ( Lawson, 2012 ). The analysis of our stillbirth 

surveillance data falls within this framework. However, to 

determine the value of adding a temporal component to 

our model, we fit both spatial and spatio-temporal models 

to our data and applied a Bayesian model selection crite- 

rion to determine the better fitting model. In any event, 

we aim to apply the conditional formulation to the still- 

birth and live birth data to investigate possible risk factors 

associated with the probability of a stillbirth event in the 

presence of spatial and spatio-temporal variation. Addi- 

tionally, after accounting for selected risk factors, as well 

as a maternal contextual effect, we aim to identify possible 

geographic regions of high intensity within the spatial and 

temporal region warranting further investigation. 

In developing our analytic approach, we acknowledge 

that a Markov Chain Monte Carlo (MCMC) approach con- 

ventionally is used to estimate posterior quantities for 

Bayesian models. Approximation to posterior distributions 

is also available through other techniques; therefore, we 

chose to use integrated nested Laplace approximation 

(INLA) in the R INLA package ( H. Rue and Chopin, 2009; 

Lindgren et al., 2011; Martins et al., 2013; Simpson et al., 

2012a; 2012b ). We chose to apply INLA, because this ap- 

proach does not require posterior sampling methods, pro- 

vides estimates quickly, and is amenable to large data sets. 

The INLA approximation to the posterior distributions ide- 

ally should be similar to the estimated posterior distribu- 

tions obtained via MCMC sampling. To support the applica- 

tion of INLA in our work, we compare how similar the two 

approaches are by using the conditional formulation of the 

point process when the stillbirth event locations arise from 

a log Gaussian Cox process (LGCP). Conditional on the in- 

tensity of the process, the stillbirth event locations are a 

realization of a Poisson point process, and the live birth 

event locations are an independent realization of a Poisson 

point process. 

Detailed description of our proposed analytic approach 

begins in Section 2 with a description of our motivat- 

ing data set and methodologic approach. Herein, we de- 

tail the Bayesian approach to estimation of the model. In 

Section 3 , we describe our simulation technique and com- 

pare the two Bayesian estimation methods for the condi- 

tional formulation of the spatial and spatio-temporal mod- 

els with respect to the recovery of true parameter values. 

In Section 4 , we describe the application of the methodol- 

ogy to our stillbirth surveillance data, and in Section 5 , we 

conclude our presentation by summarizing our findings, 

comparing our findings to those initially obtained from the 

point process approach, and discussing several remaining 

methodologic issues. 

2. Methods 

2.1. Spatial model 

Stillbirths for the years 2005 through 2011 are in the 

form of a set of n event locations { s i = 

(
Latitude i 

Longitude i 

)
: 

i = 1 , . . . , n } within Iowa, a polygonal region denoted as

W . This set of events represents the geocoded maternal 

residence at delivery for each event within W and are 
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expected to exhibit substantial spatial variation in inten-

sity. Additionally, some mothers experienced a stillbirth

in more than one pregnancy within W during the study

period. In the initial point process approach to model-

ing maternal residence, we adopted a multiplicative model

( Gatrell et al., 1996 ) for the intensity function λ( s ) of the

form 

λ( s ) = ρλ0 ( s ) λ1 ( s | θ) . (1)

The scaling parameter ρ represented the ratio of the num-

ber of stillbirth to live birth events; this quantity, assigned

in advance as all occurrences of stillbirths and live births

within W during the study period were recorded, was in-

corporated in the analysis. In model (1) , λ0 ( s ) represented

the background intensity (i.e., the number of pregnancies

at risk per unit area in the neighborhood of the location

s ) and λ1 ( s | θ) , where θ is a vector of parameters, repre-

sented the possible increase in risk as a function of s . 

In this paper, we assumed that the stillbirth event lo-

cations s i : i = 1 , . . . , n and the live birth event locations

s i : i = n + 1 , . . . , N, where N = n + m, the total number of

events, were independent realizations of Poisson processes,

with their respective intensities governing the processes

λ( s ) and λ0 ( s ) . The superposition of the two point pro-

cesses is also a Poisson point process ( Diggle and Rowl-

ingson, 1994 ). Following the work of Diggle and Rowling-

son (1994) , we defined a binary random variable Y to take

the value 1 or 0 according to whether the i th event in

the superposition was an event of the first or the sec-

ond element of the process. Conditioning on the joint

realization of these processes, it is straightforward to al-

gebraically show that the conditional probability of a still-

birth event at any location is Pr (y i = 1) = 

ρ·λ1 (s i | θ ) 

1+ ρ·λ1 (s i | θ) 
= p i .

In deriving the conditional probability, the nuisance back-

ground intensity λ0 ( s ) is conveniently eliminated from the

model. This formulation leads to a spatial logistic regres-

sion model where a linear predictor, including a contex-

tual effect that captures spatially correlated heterogeneity

w ( s i ) , is assumed within λ1 ( s i | θ) . For example, a log lin-

ear formulation for λ1 ( s i | θ) leads to a logit link to p i , i.e.,

p i = 

exp (ηi ) 
1+ exp (ηi ) 

, where ηi = x T ( s i ) β + w ( s i ) + γ j i ∈ j and γ j i ∈ j ,

where j denotes the mother, represents a maternal contex-

tual effect. Let β0 = log (ρ) denote the intercept and serves

the role of the scientifically uninteresting constant back-

ground rate; that is, it is unnecessary to also include the

constant ρ with the above parameterization. The resulting

Bernoulli likelihood is then given by 

L ( θ| s ) = 

N ∏ 

i =1 

[ { exp (ηi ) } y i 
1 + exp (ηi ) 

] 
. 

2.2. Spatio-temporal model 

Because a stillbirth event was observed with a delivery

date, it is possible to extend the conditional formulation

by considering spatio-temporal effects. Specifically, we ob-

served within study region W and a seven-year time pe-

riod T , a set of n stillbirth events, with maternal residence

at delivery given as { s i } , i = 1 , . . . , n, and also time labels

{ t i }, i = 1 , . . . , n . Here, the random variables were the spa-

tial location and the timing of delivery. Note that mothers
may have experienced multiple independent events, and

the spatial location may have changed from one event to

the next. In this paper, we readily extended model (1) and

considered a multiplicative model for the intensity func-

tion λ( s , t) that now represents the variation across space

and time of the intensity of stillbirth events, of the form 

λ( s , t) = ρλ0 ( s , t) λ1 ( s , t| θ) . (2)

Using a similar argument as with the spatial model,

if the m live birth event locations are a realization of

a spatio-temporal Poisson point process on W × T with

λ0 ( s , t ) and the stillbirth event locations are a realization

of an independent spatio-temporal Poisson point process

with λ( s , t ), then the superposition of the two point pro-

cesses is also a spatio-temporal Poisson point process pro-

vided that the two point processes are separable in space

and time ( Lawson, 2013 ). Conditioning on this joint re-

alization, the binary labeling of these n + m events form

a set of mutually independent Bernoulli random variables

with spatio-temporal dependent probabilities Pr (y i = 1) =
ρ·λ1 (s i ,t i | θ) 

1+ ρ·λ1 (s i ,t i | θ) 
. The quantity ρ is a constant background

rate now in space × time units. Our conditioning con-

verts the statistical model to a linear binary regression

model. This conversion avoids the problem of estimating

λ0 ( s , t) , which describes the spatio-temporal at-risk back-

ground population, and allows a straightforward extension

of the multiplicative decomposition of model (1) to incor-

porate parameters relating to spatial, temporal, and spatio-

temporal components considered germane to the appli-

cation. Specifically, a log linear formulation for λ1 ( s , t| θ)

leads to a logit link for p i , where now we can define ηi =
x T ( s i , t i ) β + w ( s i ) + g(t i ) + c( s i , t i ) + γ j i ∈ j and γ j i ∈ j , where j

denotes the mother, represents a maternal contextual ef-

fect as before. Here, we consider discrete time labels corre-

sponding to the number of days from January 1, 2005 and

we assume a separable covariance structure in space and

time, where w ( s i ) , g ( t i ), and c( s i , t i ) represent a spatially

correlated term, temporally correlated term, and uncorre-

lated spatio-temporal interaction term, respectively. This

spatio-temporal interaction term allows for overdispersion.

2.3. Bayesian estimation 

A Bayesian hierarchical model was used for fitting mod-

els (1) and (2) to our stillbirth surveillance data. The

focus in our analysis was to make inference about the

coefficients β allowing for the unobserved confounders

w ( s i ) , g ( t i ), c( s i , t i ) , and γ j i ∈ j , as well as obtaining a

quantitative description of variation in the local intensity

of stillbirth events within the spatial and temporal re-

gion. INLA (version 0.0-1468872408) was used to carry

out the fitting of the conditional formulation of the spa-

tial and spatio-temporal models to our stillbirth surveil-

lance data and to obtain posterior quantities of the param-

eters θ = { β, σ 2 
w 

, φ, σ 2 
g , σ

2 
c , σ

2 
γ } . The parameters σ 2 

w 

, σ 2 
c ,

and σ 2 
γ are the respective variances associated with the

spatially correlated heterogeneity term w ( s ) , the uncorre-

lated space-time component c ( s , t) , and the maternal con-

textual effect γ , respectively. With regard to the tempo-

ral dependence, in this descriptive analysis a first-order
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autoregressive time component was assumed because it 

provided a parsimonious and intuitively appealing mech- 

anism for describing temporal dependence; therefore, the 

parameters φ and σ 2 
g corresponded to the time depen- 

dent parameter and the variance associated with the white 

noise, respectively. The deviance information criterion 

(DIC) – appropriate for model comparison in complex hier- 

archical models, such as these spatial and spatio-temporal 

models applied to our stillbirth data – was used to assess 

model adequacy and to compare the models. When com- 

paring models using the DIC measure, Spiegelhalter et al. 

(2002) considered a difference in DIC of 2–3 and greater as 

meaningful; in our application, a difference in DIC greater 

than 3 was used to ascertain if the DIC was exhibiting a 

preference. 

2.4. Prior distributions 

We adopted an intrinsic conditional autoregressive 

(CAR) prior distribution for the spatially correlated hetero- 

geneity w ( s ) ( Besag and Mollie, 1991 ) given as 

w i ( s i ) | w j ( s j ) , j � = i, n δi 
, σ 2 

w 

∼ N 

( ∑ 

j∈ δi 

w j ( s j ) 

n δi 

, 
σ 2 

w 

n δi 

) 

, 

where n δi 
was the total number of first-order neighbors 

in the j th area (i.e., the regions which share common ge- 

ographical boundaries with the i th region) and δi was 

the first-order neighborhood of the i th region. Following 

Lawson (2012) , the neighborhood relation assumed be- 

tween event locations was based on a Dirichlet tessella- 

tion for a point process where the tiling of the locations 

leads to sets of natural neighbors defined by the adjoining 

edges of the tile. In other words, two locations were de- 

fined as neighbors if they shared a common border when 

the Dirichlet tessellation was used. Rather than apply some 

arbitrary means for defining neighboring points (e.g., a dis- 

tance threshold), the Dirichlet tessellation was appealing 

because it has the remarkable mathematical property that 

all locations within a tile are closer to the tile point than 

to any other point ( Rogers, 1964 ). And although a fully 

specified multivariate normal prior distribution could have 

been considered for the correlated component w ( s ) , an in- 

trinsic Gaussian prior distribution was adopted because it 

provided an attractive means for handling potentially com- 

plicated joint spatial dependencies, which were modeled 

simply through a collection of conditional dependencies, 

and was computationally advantageous. The prior distri- 

bution for each β was set to a normal distribution with 

mean 0 and variance 10 0 0. The maternal contextual ef- 

fects γ were specified as spatially uncorrelated effects so 

that γ j i ∈ j ∼ N(0 , σ 2 
γ ) , where i denotes the event and j de- 

notes the mother. A first-order autoregressive model was 

assumed for the temporally correlated effect g (t) compo- 

nent, i.e. g (t + 1) = φ · g (t) + η(t) , where η( t ) are indepen- 

dent and identically distributed N(0 , σ 2 
g ) . The uncorrelated 

space-time component c ( s , t) , which is a residual effect, 

was given a N(0 , σ 2 
c ) prior distribution. 

With INLA, modestly informed priors on the hyperpa- 

rameters for random effects were shown to be needed 

in a suite of simulation studies comparing INLA with 
MCMC sampling results using OpenBUGS in Bayesian dis- 

ease mapping ( Carroll et al., 2015 ). Therefore, a modestly 

vague gamma prior (1, 1) was placed on the inverse of the 

variance components σ 2 
w 

, σ 2 
γ , and σ 2 

c . Similarly, modestly 

vague priors were defined for the temporal component. 

Specifically, a modestly vague log gamma prior (1, 0.30) 

was placed on the natural logarithm of the marginal pre- 

cision parameter 1 

σ 2 
m 

, where σ 2 
m 

= 

1 

σ 2 
g ·(1 −φ2 ) 

; additionally, a 

modestly vague normal prior N (0, 0.35) was assumed for 

the log 

(
1+φ
1 −φ

)
, corresponding to a transformation for the 

time dependent parameter φ. Choosing more informative 

priors for these hyperparameters than the modestly vague 

priors detailed here did not significantly impact any of 

the results; however, and as was reported by Carroll et al. 

(2015) , applying increasingly more vague priors drastically 

impacted the results with INLA. 

3. Simulation studies 

To support the use of INLA, as opposed to MCMC 

sampling, as a reliable algorithm to estimate posterior 

quantities for the spatial and spatio-temporal models we 

proposed, simulation studies, defined by three general 

parameterizations of the intensity function λ( s ) , were 

conducted. The goal of the simulation studies was not to 

validate the nuanced parameterization for the intensity 

function λ( s ) applied to and estimated from our stillbirth 

data. Rather, our goal for carrying out these simulation 

studies was to compare the two Bayesian estimation 

methods INLA and MCMC sampling for the spatial and 

spatio-temporal models in a more general setting, albeit 

while maintaining some similarity with the parameter- 

ization for λ( s ) applied to our stillbirth data. Achieving 

similar results between the two Bayesian estimation meth- 

ods in such a setting would provide the desired support 

for the use of INLA in our data application. 

The m control points were simulated first, assuming 

complete spatial randomness. Next, we separately con- 

structed a point pattern of n case events, which pro- 

ceeded in two steps, beginning with generating w ( s ) with 

zero mean from a conditional specification of a Gaussian 

Markov random field (GMRF) and then, generating loca- 

tions given w ( s ) along with non-stationary mean μ( s ) . 

This construction is a LGCP. Each realized point pattern 

was simulated from a LGCP. Conditional on λ( s ) , we have 

a nonhomogeneous Poisson point process (NHPP). Follow- 

ing Besag and Mollie (1991) , the conditional specification 

of the GMRF was given as 

w i ( s i ) | w j ( s j ) , j � = i, n δi 
, σ 2 

w 

∼ N 

( 

α
∑ 

j∈ δi 

w j ( s j ) 

n δi 

, 
σ 2 

w 

n δi 

) 

, 

where α was a correlation parameter to ensure a proper 

stochastic mechanism, n δi 
was the total number of first- 

order neighbors in the j th area, and δi was the first-order 

neighborhood of the i th region. The first-order neighbor- 

hood was found from a Dirichlet tessellation for a point 

process. We set α = 0 . 95 , corresponding to strong spatial 

correlation. 
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The intensity function λ( s ) was considered to reflect

etiologic heterogeneity in occurrence of stillbirth, e.g., due

to heterogeneous risk of experiencing a stillbirth based

on some unobserved risk factors. Conceivably, this het-

erogeneity could be considered a random quantity that

changes; therefore, one reason for simulating a point pat-

tern in this doubly stochastic fashion was to assess the ef-

fect of the additional randomness induced by the inclusion

of w ( s ) on our model that was parameterized to approx-

imate the latent GMRF. This was accomplished by evalu-

ating the reasonableness of the intrinsic CAR prior speci-

fication, defined earlier, as an approximation to the latent

GMRF, as measured by σ 2 
w 

. An intrinsic CAR prior was used

because the expected posterior estimate of the correlation

parameter α from a proper weighted CAR prior was con-

sistently approaching one. Following Banerjee et al. (2015) ,

within a Bayesian framework, a prior on α that encour-

ages a consequential amount of spatial correlation would

place most of its mass near one anyway. In any event, we

also wanted to assess the recovery of the parameter β1 ,

i.e. the coefficient ascribed to a spatially-referenced covari-

ate driving the point pattern in the spatial model (1) as

well as the recovery of all model parameters in the spatio-

temporal model (2) , separable in space and time. 

In our simulation studies, we used the bounded state of

Iowa for region W and T = [1 , 60] , treated as an indexing

set { 1 , 2 , . . . , 60 } . With our real data reflecting the study

time period of 2005 through 2011, 60 discrete time points

corresponded to an evolving stillbirth event map every 6

weeks. Furthermore, we considered the setting where the

ratio of case to control events was one (i.e., ρ = 1 or equiv-

alently log (ρ) = β0 = 0 ), λ0 ( s ) = λ0 , a constant, and n =
10 0 0 ; a realization of size n = 10 0 0 corresponds roughly

to the complete enumeration of 1,195 stillbirth events ob-

served during the study period. Applying ρ = 0 . 004 , as

was observed in our stillbirth data, and preserving a point

pattern of n = 10 0 0 would require m = 250 , 0 0 0 simulated

control points. With our goal to compare INLA and MCMC

sampling in a more general setting, we justified setting

ρ = 1 so that both Bayesian methods of estimation could

be implemented easily. For an event location s and time t ,

the log linear model parameterizations considered to ad-

dress our goals were 

I. log λ1 ( s | θ) = β0 + w ( s ) . 

II. log λ1 ( s | θ) = β0 + β1 x ( s ) + w ( s ) . 

II. log λ1 ( s , t| θ) = β0 + β1 x ( s ) + w ( s ) + g(t) . 

Intensity parameterizations I and II, respectively, allow

us to assess the reasonableness of an intrinsic CAR prior

specification as an approximation to a latent GMRF and

to assess the recovery of the true parameter β1 in the

presence of unobserved spatial variation for both Bayesian

estimation methods in the spatial-only setting. For both

Bayesian estimation methods, to evaluate the recovery of

all true parameters used in generating the spatio-temporal

point process, separable in space and time, we used inten-

sity parameterization III. 

The standardized spatially-referenced covariate x ( s )

represented a simulated point-level covariate, which was

not time-varying, but exhibited strong spatial correlation

as might be found in epidemiologic applications; a Gaus-
sian random variable with mean zero and powered ex-

ponential covariance structure was assumed. The covari-

ate was generated using the RandomFields package in

R ( Schlather et al., 2015 ) and then standardized. We speci-

fied the covariance structure by using the RMpoweredexp
command where the variance was set to 1, the range to

1, the nugget to 0, and the power to 1.5. In intensity pa-

rameterization III, we assumed a discretized version of the

random fields so that any realization of the field { ( s i , t i ) }
had a separable correlation structure. Within this assump-

tion, the likelihood remained that of a conditionally mod-

ulated Poisson process. The temporal component g (t) was

a first-order autoregressive model. Unlike the model ap-

plied to our stillbirth surveillance data, our carefully con-

trolled simulated experiments obviated the need to include

a residual effect corresponding to the uncorrelated space-

time residual component c( s , t) in model (2) . See Appen-

dices A.1 and A.2 , respectively, for the simulation algorithm

used for the spatial and spatio-temporal models. 

3.1. Simulation results 

In each simulated experiment, we generated 100 re-

alizations. For each realization, posterior quantiles were

estimated from the Bayesian spatial and spatio-temporal

models using INLA (version 0.0-1468872408) and MCMC

sampling. The total number of iterations used in MCMC

sampling was 750,0 0 0 with the first 250,0 0 0 treated

as burn-in. To decrease autocorrelation, samples were

thinned, using only every 50 th step in the sampler. The

simulation studies were implemented in R using the INLA
package and R2OpenBUGS . Tabular summaries were used

to display the average measure of error (i.e., the bias) and

the corresponding standard deviation. 

3.1.1. Intensity parameterization I: log λ1 (s | θ ) = β0 + w (s ) 

As part of our goal for conducting simulation studies,

we assessed the reasonableness of an intrinsic CAR prior

specification as an approximation to a latent GMRF assum-

ing the conditional formulation of the spatial model. We

considered modest ( σw 

= 0 . 708 ), large ( σw 

= 1 . 225 ), and

very large ( σw 

= 2 . 5 ) unobserved variation for the latent

GMRF. Because we assumed the ratio of case to control

events was one (i.e., ρ = 1 ), the corresponding true value

of β0 (i.e., log ( ρ)) used in simulating the point patterns

was zero. For both Bayesian estimation methods, β0 was

well estimated and the average measure of error associ-

ated with β0 was consistently negligible (data not shown).

The top portion of Table 1 displays the bias of the esti-

mates ˆ σw 

comparing INLA with MCMC sampling. Both esti-

mation methods underestimated the true value of σ w 

used

in simulating the point patterns. Compared to INLA, how-

ever, the average measure of error was consistently smaller

with MCMC sampling. Although the average measure of

error increased for both estimation methods in the pres-

ence of incrementally larger unobserved spatial variation,

both estimation methods arguably performed reasonably

well in the presence of modest unobserved spatial varia-

tion. With a point pattern of size n = 10 0 0 , the respective

average runtimes for INLA and MCMC sampling were ap-

proximately 3 and 3290 s, respectively. 
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Table 1 

Average estimated mean of the posterior distribution (standard deviation) and average measure of error associated 

with the conditional approach to estimation via INLA and MCMC for intensity parameterizations I and II based on 100 

realizations of point patterns of size n = 10 0 0 . 

Intensity Parameterization I: log λ1 ( s | θ) = β0 + w ( s ) 

True value ( σ w ) 

0.708 1.225 2.5 Runtime 

INLA Mean ( SD ) 0.5495 (0.0541) 0.6620 (0.0827) 1.1702 (0.1612) 3 s 

Ave( ̂ σw − σw ) −0.1585 −0.5630 −1.3300 

MCMC Mean ( SD ) 0.6290 (0.0809) 0.7707 (0.1400) 1.708 (0.2948) 3290 s 

Ave( ̂ σw − σw ) −0.0790 −0.4543 −0.7920 

Intensity Parameterization II: log λ1 ( s | θ) = β0 + β1 x ( s ) + w ( s ) 

True value ( β1 ) 

−0.50 −0.25 0.00 

INLA Mean ( SD ) −0.4896 (0.0650) −0.2411 (0.0548) 0.0051 (0.0520) 

Ave( ̂  β1 − β1 ) 0.0104 0.0089 0.0051 

MCMC Mean ( SD ) −0.4908 (0.0614) −0.2352 (0.0622) −0.0048 (0.0566) 

Ave( ̂  β1 − β1 ) 0.0092 0.0148 −0.0048 

Note : INLA = integrated nested Laplace approximation; MCMC = Markov chain Monte Carlo; SD = standard deviation. 

Modest unobserved spatial variation (i.e., σw = 0 . 708 or σ 2 
w = 0 . 5 ) was assumed for parameterization II. An intrinsic 

conditional autoregressive prior distribution was adopted for the spatially correlated heterogeneity w ( s ) and a modestly 

vague gamma prior (1, 1) was placed on the inverse of the variance component σ 2 
w . The prior distribution for β1 was 

set to a normal distribution with mean 0 and variance 10 0 0. 

 
3.1.2. Intensity parameterization II: 

log λ1 (s | θ ) = β0 + β1 x (s ) + w (s ) 

As part of our goal for conducting simulation studies, 

we also assessed the recovery of the true parameter β1 in 

the presence of modest unobserved spatial variation. The 

average measure of error for three effect sizes are shown 

in the bottom portion of Table 1 assuming a point pattern 

of size n = 10 0 0 . The average measure of error was similar 

and arguably negligible for both INLA and MCMC estima- 

tion methods. 

3.1.3. Intensity parameterization III: 

log λ1 (s , t | θ ) = β0 + β1 x (s ) + w (s ) + g(t) 

We assessed the recovery of all true parameters used 

in generating the point process, separable in space and 

time, using INLA and MCMC sampling to fit the spatio- 

temporal model. Table 2 shows the average measure of 

error for each of the model components when assuming 

the true value of the time dependent parameter φ for the 

first-order autoregressive distribution was either 0.5 or 0.9; 

note, φ = 1 corresponded to a random walk and φ = 0 rep- 

resented no time dependency. For φ ∈ {0.5, 0.9}, on av- 

erage, the bias was negligible and comparable between 

the two estimation methods for the parameter β1 and 

for the standard deviation σ g associated with the white 

noise of the first-order autoregressive time series. On aver- 

age, the time dependent parameter φ was somewhat un- 

derestimated, and perhaps slightly more so in the pres- 

ence of stronger temporal dependency, for both estimation 

methods. Although the average measure of error associated 

with φ was not that different between the two estima- 

tion methods, MCMC sampling consistently outperformed 

INLA. For both estimation methods, the spatial variance 

component ( σ w 

) was underestimated by a similar magni- 

tude as seen with Intensity Parameterization I. The average 

runtimes for INLA and MCMC sampling with a point pat- 
tern of size n = 10 0 0 were approximately 10 and 7901 s,

respectively. 

3.2. Simulation conclusions 

In the conditional formulation of the spatial and spatio- 

temporal models, applicable to a more general setting than 

with the nuanced parameterization applied to our stillbirth 

data, INLA gave reasonable results compared to MCMC 

sampling, particularly for the epidemiologically interest- 

ing parameter β1 . Furthermore, results from the simulation 

study using INLA to estimate the spatio-temporal model 

suggested that the time dependent parameter φ was ade- 

quately recovered and not that different from MCMC sam- 

pling. If our primary interest was in estimating the un- 

observed spatial variation, then MCMC sampling would be 

preferred; furthermore, the researcher could consider less 

vague priors on the precision hyperparameters with MCMC 

sampling. Nonetheless, σ w 

was negatively biased for both 

methods which we believe was likely due to the inability 

of the conditional formulation of the models to capture the 

additional randomness associated with the intensity sur- 

face. With the focus of our epidemiologic application be- 

ing on the vector of β coefficients, adjusting for the spa- 

tially correlated heterogeneity effects w ( s ) , and because 

MCMC sampling applied to our large stillbirth data set 

would be very slow based on our simulation studies, we 

proceeded with INLA in estimating the spatial and spatio- 

temporal models in the data application and not MCMC 

sampling. 

4. Data application 

The IRCID began actively monitoring stillbirth deliveries 

statewide in 2005 ( Romitti, 2015 ). For the years 2005–

2011, the maternal residence at delivery (event location) 
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Table 2 

Average measure of error (standard deviation) associated with the conditional approach to estimation via INLA and MCMC for 

intensity parameterization III. 

Intensity Parameterization III: log λ1 (s , t | θ) = β0 + β1 x (s ) + w (s ) + g(t) 

True Value Average Measure of Error (Standard Deviation) 

φ β1 Ave( ̂  β1 − β1 ) Ave( ̂ σw − σw ) Ave( ̂  φ − φ) Ave( ̂ σg − σg ) 

INLA 

σw = 0 . 708 σg = 0 . 35 0.50 −0.50 0.0094 (0.0644) −0.1796 (0.0433) −0.0548 (0.2421) −0.0 0 02 (0.0505) 

0.50 −0.25 0.0075 (0.0565) −0.1836 (0.0435) −0.0490 (0.2161) −0.0 030 (0.060 0) 

0.50 0.00 −0.0053 (0.0549) −0.1904 (0.0362) −0.0607 (0.2395) −0.0010 (0.0596) 

σw = 0 . 708 σg = 0 . 35 0.90 −0.50 0.0213 (0.0640) −0.1740 (0.0481) −0.0717 (0.1040) −0.0057 (0.0672) 

0.90 −0.25 0.0054 (0.0576) −0.1902 (0.0436) −0.0683 (0.0916) −0.0095 (0.0646) 

0.90 0.00 0.0046 (0.0591) −0.1823 (0.04 4 4) −0.0810 (0.1036) −0.0118 (0.0692) 

MCMC 

σw = 0 . 708 σg = 0 . 35 0.50 −0.50 0.0107 (0.0696) −0.0975 (0.0740) −0.0098 (0.2428) −0.0122 (0.0655) 

0.50 −0.25 −0.0013 (0.0614) −0.1095 (0.0675) −0.0284 (0.1845) −0.0031 (0.0676) 

0.50 0.00 −0.0040 (0.0633) −0.1006 (0.0768) −0.0160 (0.1963) −0.0035 (0.0595) 

σw = 0 . 708 σg = 0 . 35 0.90 −0.50 0.0071 (0.0659) −0.1068 (0.0625) −0.0532 (0.0934) 0.0 0 09 (0.0667) 

0.90 −0.25 0.0052 (0.0555) −0.0959 (0.0652) −0.0484 (0.0808) 0.0 0 0 0 (0.0616) 

0.90 0.00 0.0102 (0.0553) −0.1074 (0.0828) −0.0478 (0.0758) 0.0015 (0.0652) 

Note : INLA = integrated nested Laplace approximation; MCMC = Markov chain Monte Carlo. Results are based on 100 realizations of 

point patterns of size n = 10 0 0 . Time t ∈ [1, 60], was treated as an indexing set { 1 , 2 , . . . , 60 } . An intrinsic conditional autoregressive 

prior distribution was adopted for the spatially correlated heterogeneity w ( s ) and a modestly vague gamma prior (1, 1) was placed 

on the inverse of the variance component σ 2 
w . The prior distribution for β1 was set to a normal distribution with mean 0 and 

variance 10 0 0. The standard deviation associated with the white noise of the first-order autoregressive time series was set to σg = 

0 . 35 , which corresponded to a marginal standard deviation of σm = 0 . 4041 and σm = 0 . 8030 when φ equals 0.5 and 0.9, respectively. 

A modestly vague loggamma prior (1, 0.30) was placed on the natural logarithm of the marginal precision parameter 1 / σ 2 
m , where 

σ 2 
m = 1 / [ σ 2 

g · (1 − φ2 ) ] and a modestly vague normal prior N (0, 0.35) was assumed for the log [(1 + φ) /(1 - φ)], corresponding to 

a transformation for the time dependent parameter φ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of each stillbirth and live birth delivered to an Iowa res-

ident was geocoded. There were 1195 stillbirth deliveries

from independent pregnancies enumerated by the IRCID

and 271,791 live births recorded during the seven-year

study period; pregnancies with multiple fetuses were

excluded, because of differing risks for birth weight,

gestational age, and fetal growth among multiple com-

pared to singleton pregnancies. There were 1167 mothers

who experienced a stillbirth in one pregnancy, and 14

mothers who experienced a stillbirth in two independent

pregnancies. 

The event locations of all live births in Iowa, during the

study period from families who experienced at least one

stillbirth during the study period, were included in the set

of control event locations. This corresponded to 1150 con-

trol event locations for which all had covariate informa-

tion. A complete set of covariate information was available

for 270,323 control event locations from families who did

not experience a stillbirth during the birth period. These

270,323 control event locations corresponded to 195,502

unique families. Because of the considerable memory re-

quirements needed to create and process the neighbor-

hood relation between event locations, defined based on

the Dirichlet tesselation, and to fit the spatial-temporal

models, 50,0 0 0 (25%) control families were randomly se-

lected from the 195,502 unique families. Our analysis in-

cluded 71,316 events (1195 stillbirth events, including 1150

sibling controls; 68,971 remaining controls), which corre-

sponded to 51,181 families. We repeated our analyses on

three randomly sampled data sets of similar size, and the

results remained robust for each data set (data not shown).

The spatial distribution of stillbirth event locations did

not differ appreciably from the distribution of the event
locations for the at-risk population, namely, maternal resi-

dence at delivery for each live birth ( Zahrieh et al., 2018 ). 

Our surveillance data were observed with a time label,

defined as the number of days from January 1, 2005, and a

spatial location, namely, the maternal residence at the time

of a stillbirth or live birth event. Fig. 1 displays the suc-

cessive number of stillbirths to the number of live births

per month during January 1, 2005 through December 31,

2011. Although there was considerable variability, follow-

ing a slight increase in the ratio through 2008, the ratio

appears to modestly decrease. 

We fit several Bayesian spatial and spatio-temporal lo-

gistic regression models for the binary outcome (stillbirth,

live birth), where the probability was a function of space-

only or space and time ( Table 3 ). The DIC expressed a

strong preference for the spatio-temporal model that in-

cluded the time varying covariate maternal age at the time

of a delivery, maternal race/ethnicity, and two zip code

tabulation area (ZCTA) covariates: percentage of childbear-

ing women with less than a bachelor’s degree and me-

dian income, both obtained from the 2007 to 2011 Ameri-

can Community Survey data. Notably, we observed a strong

association between maternal race/ethnicity and urban-

ized ZCTAs of Iowa, as defined by the 2010 U.S. cen-

sus (67% of mothers categorized as other race/ethnicity

were estimated to live in urban areas compared with 45%

of non-Hispanic whites) and based on the DIC, we se-

lected the parsimonious model excluding the urban ver-

sus rural indicator. Table 4 displays the estimated poste-

rior quantities obtained from fitting our selected Bayesian

spatio-temporal logistic model. With the exception of me-

dian income, the expected posterior estimates and the

corresponding 95% credible intervals suggested that the



104 D. Zahrieh, J.J. Oleson and P.A. Romitti / Spatial and Spatio-temporal Epidemiology 29 (2019) 97–109 

Fig. 1. Ratio of stillbirth deliveries to 10 0 0 live births: Months since January 1, 2005 of successive stillbirth deliveries per 10 0 0 live births between January 

1, 2005 and December 31, 2011. 

Table 3 

Model preference using the deviance information criterion (DIC). 

Model Covariates DIC Runtime (s) 

w ( s ) + γ None 12068.05 845 

x T ( s ) β + w ( s ) + γ Included 11991.31 722 

w ( s ) + g(t) + c( s , t) + γ None 11996.36 80,958 

x T ( s , t) β + w ( s ) + g(t) + c( s , t) + γ Included + Urban vs. Rural Indicator 11926.05 136,289 

x T ( s , t) β + w ( s ) + g(t) + c( s , t) + γ Included 11922.89 143,282 

Note : The included vector of covariates x T comprised maternal age at delivery, an indicator for maternal race/ethnicity, and the 

ZCTA-level covariates percentage of childbearing women with less than a bachelor’s degree and median income; continuous 

covariates were centered and standardized. The percent of child-bearing women with less than a bachelor’s degree and median 

income were calculated for each ZCTA from the 2007 to 2011 American Community Survey data. A ZCTA was designated as 

urban if it intersected with the urbanized areas of Iowa, as defined by the 2010 census (US Census Bureau) or as rural if it did 

not intersect with urbanized areas; urbanized areas are defined by the census as having a population of > 50,0 0 0 residents 

with a density of at least 500 people per square mile. The neighborhood relation assumed between known event locations 

was based on a Dirichlet tessellation and delivery date was represented by discrete time labels corresponding to the number 

of days from January 1, 2005. The model parameters w ( s ) , γ , g ( t ), and c( s , t) represented spatially correlated heterogeneity, 

a maternal contextual effect, a temporally correlated term, and an uncorrelated spatio-temporal interaction term, respectively. 

50,0 0 0 (25%) control families were randomly selected from the 195,502 unique families who did not experience a stillbirth 

during the birth period (2005–2011); therefore, the analysis population included 71,316 events (1195 stillbirth events, including 

1150 sibling controls; 68,971 remaining controls), which corresponded to 51,181 families. The model shown in the last row of 

the table was selected as the final model. 
parameter estimates were important; in particular, the 95% 

credible interval for the time dependent parameter φ ex- 

cluded zero (mean: 0.8517; 95% credible interval: 0.4604, 

0.9938). The estimated runtime to fit the selected spatio- 

temporal logistic model with INLA was 143,282 s. 

From our final model that included the point- 

level covariates maternal age at delivery and maternal 

race/ethnicity, as well as the regional-level (ZCTA) covari- 

ates percent of childbearing women with less than a bach- 

elor’s degree and median income, and controlled for the 

live birth events, the posterior expected estimates for the 

spatial correlation component, temporal correlation com- 

ponent, the spatio-temporal residual component, and the 

time series plot indexed by the number of days from Jan- 

uary 1, 2005 are displayed in Fig. 2 for the 1195 stillbirth 

events. The Bayesian stillbirth event map for the spatial 

correlation component ( Fig. 2 (a)) suggests that there are 
peaks in the spatial component in the south-central and 

south-east areas of Iowa, as well as in a south-easterly di- 

rection from Des Moines; we single out this latter area 

because this observation was evidenced when fitting the 

point process model. The Bayesian stillbirth event map for 

the temporal correlation component ( Fig. 2 (b)) indicates 

temporal variations with marked changes scattered across 

the state. Based on the Bayesian map of the space-time 

residual component ( Fig. 2 (c)), there is considerable ex- 

tra variation remaining not accounted for by the separable 

space and time components. Lastly, the time series plot of 

the temporal correlation component ( Fig. 2 (d)) does not in- 

dicate any apparent cyclical behavior over the study period 

and mirrors the observed trend depicted in Fig. 1 . 

To assess localized spatio-temporal behavior of the 

model and the assessment of unusual aggregation of 

stillbirth events over time, heat-contour maps of relative 
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Table 4 

Estimated posterior quantities from fitting the final model. 

Description of Explanatory Variable Mean (SD) 95% Credible Interval 

Intercept β0 −4.5520 (0.0401) −4.6312 −4.4738 

Point-Level Covariates 

Maternal Age (Years) β1 0.0692 (0.0292) 0.0117 0.1265 

Other Races/Ethnicities versus non-Hispanic White Indicator β2 0.6733 (0.0712) 0.5327 0.8122 

Regional-Level (ZCTA) Covariates 

Percent of Childbearing Women with Less than a Bachelor’s Degree β3 0.0973 (0.0392) 0.0201 0.1739 

Median Income β4 0.0172 (0.0384) −0.0578 0.0929 

Random Effects 

Spatial Component 1 
σ 2 

w 
4.4863 (1.4223) 2.4824 7.9881 

Temporal Component 

φ 0.8517 (0.1432) 0.4604 0.9938 
1 
σ 2 

m 
13.9404 (6.0656) 6.8327 29.7302 

Space-Time Residual Component 1 
σ 2 

c 
4.6 876 (1.64 92) 2.2746 8.6778 

Maternal Contextual Effect 1 
σ 2 

γ
5.3071 (1.7304) 2.8016 9.5144 

Note : All continuous covariates were centered and standardized. Estimates of posterior quantities were obtained from the 

INLA package. The deviance information criterion was 11922.89. The percent of child-bearing women with less than a Bach- 

elor’s degree and median income were calculated for each ZCTA from the 2007 to 2011 American Community Survey data. 

Other race/ethnicities included unknown race/ethnicity. Precisions are presented for the random effects. The corresponding 

mean of the estimated posterior distribution for σ w , σ m , σ c , and σγ were 0.4721, 0.2678, 0.4619, and 0.4341, respectively. 

Fig. 2. Bayesian disease maps from the final model: For the 1195 stillbirth deliveries, the posterior expected estimates from the Bayesian spatio-temporal 

logistic model fit to our stillbirth surveillance data: four displays correponding to (a) the spatial component, (b) the temporal correlation component, (c) 

the space-time residual component, and (d) the time component time series plot indexed by the number of days from January 1, 2005. The red dotted 

lines in (d) indicate one-year intervals. Estimated posterior quantities were obtained from the integrated nested Laplace approximation. 
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Fig. 3. Bayesian disease maps of relative risk from the final model: Bayesian relative risk maps, presented as heat-contour plots, based on the estimated 

posterior expectations of all model components from the spatio-temporal Bayesian hierarchical model that controlled for the live births, mapped at the 

maternal residence for the 1195 stillbirth deliveries. Estimated posterior quantities were obtained from the integrated nested Laplace approximation. 

 

risk within the time intervals 20 05–20 06, 20 07–20 08, 

and 2009–2011 were investigated. For the 1195 stillbirth 

events, Fig. 3 displays the marginal posterior expectation 

results for the spatio-temporal model that included the 

covariates and controlled for the live births, where the 

spatio-temporal relative risk was defined as λ1 ( s i , t i | θ) = 

exp ( x T ( s i , t i ) β + w ( s i ) + g(t i ) + c( s i , t i ) + γ j i ∈ j ) . In other

words, the posterior estimates of spatio-temporal relative 

risk included all model components of risk excluding the 

intercept. The estimated mean of the posterior distribution 

of the model parameters was used in obtaining local- 

ized relative risk at the three temporal increments over 

the study period. The cities with a population > 50,0 0 0 

residents are superimposed and presented as solid green 

diamonds. Edge effects were present, so care needs to 

be exercised in interpreting the heat-contour maps along 

the boundary of the spatial region. Nonetheless, apparent 

changes were seen with this spatio-temporal presentation 

of the Bayesian relative risk maps. Notably, the Bayesian 

relative risk maps indicated increasing risk in the north- 

east, east, and south-east areas of Iowa and decreasing risk 

in the south and south-westerly direction from the central 

counties of Iowa, over the birth period. 

5. Discussion 

In our epidemiologic setting where it can reasonably be 

assumed that the stillbirth and live birth event locations 

arise from independent Poisson point processes, the condi- 

tional formulation of the point process model still allowed 

us to capture the salient features of our stillbirth surveil- 

lance data while quantifying localized geographic regions 

of high relative risk. Moreover, the conditional approach 

greatly simplified the analysis and interpretation compared 

with modeling the maternal residence via a point process 

model. As opposed to the point process modeling approach 

applied initially, the conditional formulation was easily ex- 

tended to include temporal effects and allowed for the in- 

clusion of covariate information attached to both stillbirth 

and live birth; therefore, we were now able to quantify ge- 

ographic regions of excess stillbirth risk after adjusting for 

our set of covariates, and both spatial and temporal effects. 

Although we were no longer modeling the spatial distribu- 

tion of event locations, we can still, to some extent, as- 

sume that the data arose from a LGCP where the intensity 

of the process is governed by a GMRF. That is, conditional 

on the intensity, the data are a Poisson point process and 
then conditional on the locations we showed that we can 

reasonably account for unobserved spatially correlated het- 

erogeneity assuming an intrinsic CAR specification within a 

relatively simple Bayesian spatial logistic regression model 

estimated with INLA. 

In our data application, we added the time of a still- 

birth event to the event location to facilitate our un- 

derstanding of how stillbirth events were geographically 

linked within Iowa during the study period. Although we 

did not model the spatio-temporal distributions of the 

event locations directly, we can pragmatically assume that 

the data arose from a spatio-temporal LGCP where the in- 

tensity of the process was governed by discretized space- 

time random fields. Our general simulation study demon- 

strated the similarity between the conditional formulation 

of the spatio-temporal model and a spatio-temporal LGCP. 

In particular, in the presence of modest spatial variation 

associated with the GMRF, the conditional formulation of 

the spatio-temporal model estimated with INLA was sensi- 

tive to modest and strong temporal dependence assuming 

a first-order autoregressive model. 

The argument for using the INLA R package to esti- 

mate the Bayesian spatial and spatio-temporal models was 

twofold. First, INLA provided a faster and reasonably accu- 

rate alternative to MCMC sampling for posterior parameter 

estimation. Ideally, results using INLA should be close to 

the MCMC approach to estimation, which we observed in 

our simulation studies applicable to a general setting for 

the recovery of the parameter β1 , the time dependent pa- 

rameter φ, and the standard deviation σ g associated with 

the white noise, but less so for the recovery of the vari- 

ance σ 2 
w 

associated with the spatially correlated hetero- 

geneity effects w ( s ) . Despite parameterizing the intensity 

function to represent a form of a LGCP, the underestima- 

tion of σ 2 
w 

for both Bayesian estimation methods was ex- 

pected because the heterogeneity due to variability in the 

intensity surface is not captured in the likelihood func- 

tion for the conditional formulation of the point process. 

INLA was particularly useful for our application where con- 

ventional MCMC sampler programs would be extremely 

slow. Second, it offered a flexible model specification to 

capture the salient features of our stillbirth surveillance 

data and was applicable to a log-linear Gaussian model. 

The main disadvantage of using INLA was the need to use 

a less vague prior on the precision hyperparameters. In 

the current application, the focus of the analysis was on 

the vector of β coefficients, adjusting for the confounding 
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variables w ( s ) , γ , and g (t) . If the goal, for example, was to

model and draw inference on the unobserved spatial vari-

ation, the data analyst would need to be prepared to carry

out sensitivity analyses. 

The parameterization of the modeled excess risk com-

ponent in the multiplicative formulation of the intensity

function flexibly permitted inclusion of model components

that captured important and nuanced features of the appli-

cation, such as a maternal contextual effect. Additionally,

the spatio-temporal model allowed us to obtain a quanti-

tative description of variation in local intensity of stillbirth

events in space and time. Although our focus was on rela-

tive risk estimation rather than cluster detection, localized

areas of excess aggregation of stillbirth events over time

were quantified based on a host of important features

captured by our model parameterization and identified for

further investigation. There was some agreement as well

as some differences between the results obtained from the

conditional approach and the findings previously obtained

from the point process approach. The mapped regions of

high levels of spatially correlated heterogeneity were qual-

itatively similar to the mapped regions obtained from the

point process model applied to these data, and, notably,

neither map indicated a random scatter of areas of high

levels. Although maternal age at the time of a stillbirth

delivery was not shown to be associated with the spatial

distribution of stillbirth after applying the point process

model, it was predictive in the conditional approach that

modeled the conditional probability of stillbirth; the latter

finding was consistent with a recent systematic review and

meta-analysis from 14 case-control studies that showed

advanced maternal age increases the odds of stillbirth

( Lean et al., 2017 ). Also, after controlling for the at-risk

live birth intensity in the point process model, maternal

residence in urban locations was strongly associated with

the spatial distribution of stillbirth; however, the presence

of race/ethnicity in the conditional model obviated the

need for the urban/rural factor. 

There were several limitations of our methodologic ap-

proach. We adopted a CAR prior for the spatially correlated

heterogeneity where the neighborhood relation between

event locations was based on a Dirichlet tessellation for

a point process. This defensible approach for defining

neighbors resulted in a connected graph that required

high memory requirements to create and process; coupled

with the rather high memory requirements needed to

fit the spatio-temporal model we, therefore, based our

inference on a random sample of 50,0 0 0 control families

or 25% of the 195,502 unique families. However, the

analysis was repeated on 3 randomly sampled data sets

of similar size and the conclusions were unchanged. As

this was a descriptive analysis, edge effects were ignored.

Also, for environmental risk assessment where continuous

risk fields may be affecting the at-risk population, a range

of appropriate and suspected spatio-temporal covariates

are needed to quantitatively describe excess risk. An

autoregressive prior distribution was used, assuming a

first-order autoregressive model. Although this choice for a

prior distribution allowed for a linear (i.e., with respect to

the previous value) non-parametric temporal effect, alter-

native formulations could be considered for the temporal
component. Lastly, further work is needed to validate the

final model applied to our stillbirth data. 

There were also some notable study design limitations.

Although the maternal residence at delivery was used to

represent exposure to environmental risk, albeit treated as

a contextual effect in our model formulation, it ignored

the possibility that exposure to environmental risks may

occur elsewhere. Also, the residence at delivery may not

represent the residence at conception or during early preg-

nancy. In addition, unavailable fetal and maternal risk fac-

tors not included in our model limits the interpretation of

our results. Future follow-up of mothers within the spa-

tial and temporal geographic regions of excess risk com-

pared to non-risk may provide insights into these unmea-

sured environmental and social factors. Lastly, a longer

study time period is needed to better characterize spatio-

temporal changes in relative risk. 

Conclusions 

Using a conditional approach to modeling the geocoded

stillbirth and live birth data, we quantified and mapped

the excess stillbirth risk in the presence of spatial and

temporal heterogeneity and after adjusting for covariates

attached to both stillbirth and live birth. Our model was

fitted with INLA, as opposed to MCMC sampling, with

reasonable accuracy, and INLA accommodated our large

data set. Furthermore, our use of the conditional formu-

lation was readily extended to include temporal effects. To

our knowledge, our study is the first to conduct a formal

spatio-temporal analysis of stillbirth surveillance data. Al-

though the temporal correlation component indicated tem-

poral variations with marked changes scattered through-

out the state, the residual space-time component indicated

that there was extra variation remaining not captured by

the separable space-time components and covariates avail-

able for analysis. Nonetheless, our Bayesian relative risk

maps indicated increasing and decreasing risk over the

birth period, which may warrant further public health in-

vestigation in the geographic regions identified. 
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Appendix A. Simulation technique 

A.1. Spatial model 

First, we simulated m control points assuming complete

spatial randomness. The m geographic (longitude, latitude)
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pairs were generated uniformly in W using rejection sam- 

pling. Next, we independently generated a point pattern of 

n case events. Constructing a point pattern proceeded in 

two steps, beginning with generating w ( s ) with mean zero 

from a conditional specification of a Gaussian Markov ran- 

dom field (GMRF) with a first-order neighborhood struc- 

ture based on a Dirichlet tessellation for a point process 

and then, generating locations given w ( s ) along with non- 

stationary mean μ( s ) . This construction is a log Gaussian 

Cox process. Conditional on λ( s ) , we have a nonhomoge- 

neous Poisson point process (NHPP). For the given condi- 

tional specification of the GMRF and nonstationary mean 

μ( s ) , our algorithm to sample one realization of n case 

events, therefore, was as follows: 

1. For large N , simulate s = { s 1 , s 2 , . . . , s N } assuming com- 

plete spatial random ness within W 

2. Generate w ( s ) a GMRF with mean zero 

3. Calculate λ( s ) = exp 

(
μ( s ) + w ( s ) 

)
4. Define λmax = MAX 

(
λ( s ) 

)
5. Thin the simulated process as follows 

(a) Randomly draw a point s with replacement 

(b) Generate a random number u from the uniform dis- 

tribution (0, 1) 

(c) If 
λsampled 

λmax 
> u, accept the point s 

(d) Repeat (a)–(c) until the desired number of points 

( n = 10 0 0 ) are generated 

The N geographic (longitude, latitude) pairs were gener- 

ated uniformly in W using rejection sampling. Complete 

spatial randomness in step 1 of the algorithm was achieved 

by generating geographic pairs uniformly on the enclosing 

rectangle [ −96 . 60641 , −90 . 13772] × [40 . 37634 , 43 . 51041] .

The approximate area of the polygonal boundary W is 

56,025.5 square miles and the approximate area of the 

enclosing rectangle is 73,029.64 square miles. 

The case event locations were a realization of a Pois- 

son point process on W , with intensity λ( s ) and the con- 

trol event locations were a realization of an independent 

Poisson point process with constant intensity λ0 ( s ) ≡ λ0 . 

Conditional on the n + m = 2 n locations s i , which we call 

events , the labels of these events were a set of mutually 

independent Bernoulli random variables; that is, we as- 

sociated with each event location a binary variable ( y i ) 

which labels the event either as a case ( y i = 1 ) or a con- 

trol ( y i = 0 ). Conditioning on the joint realization of these 

point processes, the conditional probability of a case at any 

location is 

P r(y i = 1) = 

λ( s i | θ) 

1 + λ( s i | θ) 
. 

A.2. Spatio-temporal model 

We assumed a separable covariance function in space 

and time (i.e., an additive form in spatial and temporal ef- 

fects) without a space-time residual. First, we simulated m 

control points assuming complete spatial randomness, and 

for each location, we uniformly simulated discrete time [1, 

60]. Next, we independently generated a point pattern of 

n case events from a log Gaussian Cox process in space 
and time using a global majorizing function within a re- 

jection algorithm. Conditional on λ( s , t) , we had a spatio- 

temporal NHPP for the case event locations within the spa- 

tial and temporal region. 

For the given conditional specification of the Gaus- 

sian Markov random field (GMRF) and nonstationary mean 

μ( s ) , as well as a first order autoregressive time series 

g (t) , our algorithm to sample a realization of n case events 

was as follows: 

1. For large N , simulate s = { s 1 , s 2 , . . . , s N } assuming com- 

plete spatial randomness within W 

2. For each of the N locations, uniformly simulate discrete 

time [1, 60] with replacement 

3. Generate a first order autoregressive time series g (t) for 

t ∈ [1, 60] and merge with the data set of size N by t 

4. Generate w ( s ) a GMRF with mean zero 

5. Calculate λ( s ) = exp 

(
μ( s ) + w ( s ) + g (t) 

)
6. Define λmax = MAX 

(
λ( s ) 

)
7. Thin the simulated process as follows 

(a) Randomly draw a point s with replacement 

(b) Generate a random number u from the uniform dis- 

tribution (0, 1) 

(c) If 
λsampled 

λmax 
> u, accept the point s 

(d) Repeat (a)–(c) until the desired number of points 

( n = 10 0 0 ) are generated 

The case event locations were a realization of a spatio- 

temporal Poisson point process on W × T , with intensity 

λ( s , t) and the control event locations were a realization 

of an independent spatio-temporal Poisson point process 

with constant intensity λ0 ( s , t) ≡ λ0 . Conditional on the 

n + m = 2 n locations ( s i , t i ), which we call events , the la-

bels of these events were a set of mutually independent 

Bernoulli random variables; that is, we associated with 

each event location a binary variable ( y i ) which labeled the 

event either as a case ( y i = 1 ) or a control ( y i = 0 ). Con-

ditioning on the joint realization of these point processes, 

the conditional probability of a case at any event location 

was 

P r(y i = 1) = 

λ( s i , t i | θ) 

1 + λ( s i , t i | θ) 
. 
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