
Integrating independent spatio-temporal
replications to assess population trends in
disease spread
John VanBuren,a*† Jacob J. Oleson,a Gideon K. D. Zambaa and
Michael Wallb

Glaucoma is the second leading cause of blindness in the USA. A visual field test (perimetry) is used to sample
and quantitate visual field function in preselected regions in the eye. These regions can be considered a spatial
field with replications across independently measured individuals. At return visits, a new set of visual field mea-
surements is obtained producing a subject specific spatio-temporal dataset. We develop a Bayesian hierarchical
modeling framework to analyze these spatio-temporal datasets both for individual level spread and as aggregate
population level trends. Our model extends previous research utilizing a dimension reduction matrix and indi-
vidual specific latent variables. Human characteristics are incorporated into the model to help explain glaucoma
progression. One beneficial product of our model is smoothed estimates for individuals. We also specify how pro-
gression rates are computed for monitoring purposes so that clinicians can track changes and predict forward in
time. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Models that adequately estimate and forecast the spread of disease over both space and time are impor-
tant in many disciplines including epidemiology, ecology, biostatistics, applied mathematics, and geog-
raphy. Spatio-temporal modeling has been used to model many epidemics and have been increasing in
popularity over the years [1]. Each passing year brings more mathematical tools being developed and
computational efficiency increases, which allows for more model complexity. With the abundance of
large data collected today, statistical approaches need to evolve to handle new complex scenarios.
One such scenario is when diseases spread over time throughout a person’s body or specific organ. In
this paper, we demonstrate how a spatio-temporal model can be used to evaluate population level trends
when diseases progress at different rates between independent subjects.

Three important methods for modeling spatio-temporal disease spread are stochastic compartmental
models (e.g., SIR models), diffusion models, and dimension reduction models. Kermack and
McKendrick [2] used deterministic systems of differential equations, which have served as the basis be-
hind the development of stochastic compartmental models. These models excel when locations are
clearly defined and objects or people can be categorized into specific compartments [3–8]. Ecological
diffusion differential equations describe the spatio-temporal process of a disease allowing for drastic dis-
similarities between neighbors [9]. Hooten, Garlick, and Powell [9] introduced multi-scale homogeniza-
tion methods based on an ecological diffusion model that can approximate partial differential equations
by smoothing the noise process. This is computationally advantageous over traditional diffusion models
first introduced by Whittle [10] at the price of estimation accuracy, which is useful if the underlying pro-
cess cannot be modeled due to its excessive size. In general, ecological diffusion models are strategic
when data are collected over a large number of time points, which is often not the case in biomedical
studies [11–13].
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Dimension reduction models utilize the specification of basis functions that are numerical vectors that
describe a specific proportion of the data or process variability. There are numerous methods that can be
employed to specify basis functions, and each technique has its own benefits. Moran’s operator has been
used to determine positive and negative spatial dependences in spatial generalized linear mixed models
[14,15]. This utilizes the pre-specified adjacency matrix in determining the basis vectors. Oleson and
Wikle [16] used a pre-specified number of empirical orthogonal functions (EOF) on the spatio-temporal
dataset as their basis functions along with latent expansion coefficients to predict the data. EOFs are op-
timal in describing the most variability among any possible orthogonal sets of basis functions with the
same number of vectors [1]. Regardless of the method used in the creation of a basis function, dimension
reduction models utilize a subset of the potential basis vectors to minimize the parameters needed.

When examining disease spread, it is not typical to have a single occurrence of the spread. In other
words, not all diseases are spread only once, as many are seasonal as evidenced by influenza or strep
throat [17]. In those cases, a reinfection process may be included in the model that incorporates a direct
relationship between the different periods [6]. It is also important to note that different spatial regions
may have different disease transmission rates, but the regions are not truly independent of each other
as living objects are not stationary and infectious hosts often interact with susceptible individuals across
locations [5]. For our research, we are interested in modeling the independent replication of disease
spread across locations where the location is the spread within the body or organ. We use a model to
describe how disease progression is related to an overall population effect via subject level baseline co-
variates. Our model extends upon the work of Oleson and Wikle [16] in a Bayesian hierarchical format
to include a dimension reduction matrix along with latent variables in order to capture the spatio-
temporal population trend.

The method is developed in the context of glaucoma progression. Wall, Woodward, Doyle, and Artes
[18] discussed research designed to study the mechanism of perimetric variability. In their study, visual
field measurements were tested and retested covering the central 24° of the visual field by using the
Humphrey Field Analyzer. The visual field is gridded on a two-dimensional scale into 54 different re-
gions as shown in Figure 1. Patients are scheduled to return for repeat testing every 6months for 4 years.
The resulting data are a spatial field with measurements that change with each visit, yielding a within-
person spatio-temporal dataset. On a population level, we can use these between-subject spatio-temporal
replications of independent participants to determine how human characteristics and demographics can
collectively affect glaucomatous progression. Clinically, this research can help determine population
subgroups with a higher risk of glaucoma progression. In addition, the statistical model will help deter-
mine which visual field areas are prone to progression.

Previous research presented six distinct nerve fiber bundle zones within the central 24° of the visual
field that are thought to be important in assessing glaucoma progression [19]. We will use a confirmatory
factor analysis technique on spatio-temporal data to relate the observed data to those nerve fiber bundle
regions. Finally, once the population model parameters are estimated, the model is used to predict visual
field measurements for an individual. Rates of change in an individual at each location can be modeled
through the smoothed temporal estimates to calculate individual glaucoma progression rates.

In this paper, we introduce the motivating example behind our research in Section 2. Subsequently,
we discuss previous work by other researchers to build the foundation for our Bayesian hierarchical
model in Section 3. This leads to simulation results in Section 4, and we apply the model to a dataset

Figure 1. Nerve fiber bundle regions as defined by Garway-Heath et. al.
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of participants with glaucoma in Section 5. To conclude, we discuss the findings and future steps in
Section 6.

2. Motivating study

The motivation behind this model comes from a dataset collected from the Mechanisms of Perimetric
Variability grant studying glaucoma at the University of Iowa. Glaucoma is a condition of the eye that
damages the optic nerve and is a leading cause of blindness [20]. Retinal ganglion cells are neurons that
run through the optic nerve to connect to the brain, which provides vision to a person. In the eye, there
are three different sources of pressure on the optic nerve: the intraocular pressure, the cerebrospinal fluid
pressure, and the arterial blood pressure. For the optic nerve to remain healthy and allow the retinal gan-
glion cells to properly function, the interaction of these three pressures needs to be balanced. In many
glaucoma cases, it appears that an increase in intraocular pressure damages is the main factor leading
to optic nerve damage.

The study enrolled 120 participants with glaucoma and 60 participants with normal vision. Both eyes
were assessed upon enrollment to determine which visual field(s) met inclusion criterion. If only one vi-
sual field met the criterion, it was measured at the remaining follow-up visits. If both visual fields met
the criterion, one was randomly chosen and it was measured at all follow-up visits. The visual grid on
the left eye is flipped to the form of the right eye so visual grid locations correspond to identical locations
regardless of the eye measured. All data are presented in the right eye form. Visual field measurements
were collected covering the central 24° of the visual field using the Humphrey Field Analyzer standard
automated perimetry size III. This central 24° section of the eye is gridded on a two-dimensional scale
into 54 locations. The visual field measurements can be measured at each of the 54 locations at a single
time point per individual. The raw data represented a ratio of background light intensity to stimulus light
intensity. An inverse log10 transformation was implemented to convert the raw data to a decibel mea-
surement, the latter ranging from 0 to 40, which makes it easier for clinicians to process. Locations
26 and 35 on the grid mapped to physiological blind spots in the visual field so they were removed from
all analyses.

Two baseline visits were completed within 8weeks of each other and then were averaged together at
each location to produce a more stable measurement. After baseline, follow-up measurements were col-
lected every 6months for 4 years, or eight total follow-up visits. When an individual is routinely
checked, his or her data form a unique spatio-temporal dataset ranging from a baseline visit to the most
recent checkup (time, T). Across all participants, population estimates can be calculated on explanatory
variables using all the participants’ data.

Explanatory variables of interest included glaucoma type, gender, surgery status, mean deviation cat-
egory, an indicator for optic disc hemorrhage, baseline age, and the baseline average retinal thickness.
Glaucoma type was categorized into three groups: Primary Open-Angle Glaucoma, Normal-Tension
Glaucoma, and Other (includes angle closure glaucoma, mixed-mechanism glaucoma, pigmentary glau-
coma, pseudoexfoliative glaucoma, traumatic glaucoma, and uveitic glaucoma). Surgery status is an in-
dicator of whether or not a person had surgery after being diagnosed with glaucoma. In most cases,
trabeculectomy was the surgical procedure performed, but specific details of the surgery were not avail-
able. Mean deviation is a measure of average loss across the visual field with some weighting for the
central locations. These values are categorized into mild and moderate. Age and baseline average retinal
thickness were centered prior to performing the analyses. Baseline demographics of the participants are
presented in Table III. There were 120 people enrolled in the study. Only 52 of them have complete data
and were used in the analysis. The other 68 individuals were used to construct the dimension reduction
matrix, which is described in Section 5.1.

3. Bayesian hierarchical model

3.1. Model introduction

The modeling framework of Hooten and Wikle [11] and Oleson and Wikle [16] serve as the basis for our
proposed model. Our Dimension Reduction On Independent Infectious Disease Systems (DROIIDS)
model is an extension of these models. Both previous models focus on a single occurrence of the disease
spread rather than many independent replications of the process. Our problem of interest contains spatio-
temporal processes over identical regions replicated on independent people. This will allow for
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population averaged interpretation to identify the underlying parameters associated with glaucoma pro-
gression. In the hierarchical Bayesian framework chosen here, the data model relates the observed data
to a set of unobserved latent variables through a combination of the specified likelihood and a set of prior
distributions. The process model describes how the latent variables interact through one or more sets of
equations. Parameter models contain prior distributions which play a crucial role in the forming of full
conditionals which are used in the estimation process. We describe the three subset models (i.e., Data,
Process, and Parameter) in the DROIIDS model in the next three sections.

3.2.1. Model definition (data model). The outcome score, zitl, is the assumed normally distributed deci-
bel measurement described in Section 2 for person i=1,…,N; at time point t, t=1,…,T and location
l=1,…,L. Let zi,t be a vector containing all the locations observed values (zi,t= (zi,t,1,…, zi,t,l…, zi,t,
L)
’).The following data model is considered for outcome measurement zi,t.

Data Model : zi;t ¼ Φai;t þ X iβ þ εi;t (1)

Three components are included in this level: a dimension reduction portion (Φai,t), a covariate portion
(Xiβ), and a vector of location-specific errors (εi,t). The full data for an individual, zi, are structured in an
L×T matrix. The rows within column t are the L-correlated spatial observations at time t. For each row,
l, there are T successive and regularly spaced measurements collected across visits.

Propagator matrices, or transition matrices, contain loadings that relate an individual’s latent variables
to the observed data [1]. Latent variables are unobserved variables to which we will return shortly. In our
model, the propagator matrix, Φ, allows for dimension reduction in the data through the specification of
a subset of basis functions, letting us describe the variability through fewer parameters. Basis functions
are mathematical representations of the observed data simplified into linear vectors. There are many dif-
ferent methods to create basis functions from the data such as orthogonal polynomials, generalized
Moran, EOFs, and factor analyses (see Cressie and Wikle [1] for details). To produce EOF basis vectors
and values, eigenvalue decompositions are performed on the spatial correlation matrix between the lo-

cations. To illustrate, let z ¼
z1
⋮
zN

2
64

3
75, where zi is a 1 × L matrix of baseline spatial values. The spatial cor-

relation matrix can be computed by taking the correlation between the locations of z (i.e., cor(z)), which
results in an L×Lmatrix. EOF basis vectors have the characteristic that the first basis vector explains the
most variability across the spatial grid and each successive basis vector decreases the amount of variabil-
ity explained. They are optimal in explaining the most variability for a fixed number of basis vectors
compared with any other set of bases and are recommended to be the standard for which all other basis
functions are judged [1]. Suppose the first p basis vectors of the EOFs are kept. Higher loading magni-
tudes within a basis vector indicate the locations that are represented by that specific basis vector. Using
the first p basis vectors, a Varimax rotation can be performed to create factor analysis basis vectors. This
rotates the pre-specified number of basis vectors so that locations are predominately represented by a
single basis vector instead of through a linear combination of every basis vector, while maintaining
the orthogonality property of the principal components. Oftentimes, the rotated vectors are more inter-
pretable than their corresponding original basis vectors. The number of basis vectors or columns retained
in the propagator matrix, Φ, is equivalent to the number of latent variables needed for an individual at
each time point. The propagator matrix has dimension L×p and is assumed to be identical across person
and time. This matrix is designed to capture the spatial correlation in the data.

Latent variables are an essential part of hierarchical models, and they allow the dimension reduction
technique to be utilized. The latent variables for an individual person at a specific time point are the mul-
tiplicative factors that describe how the basis vectors should be combined to estimate every location
across the spatial grid. In this model, the latent variables, ai,t, for an individual has dimension p× (T
+1). Column two through T+1 corresponds to time points one through T, respectively. The first column
in the latent matrix serves as the initial starting point for the latent process (at = 0), which is necessary
from a modeling standpoint.

Individual level baseline covariates (B variables) are characterized in the X matrix within Eqn (1),
which has dimension 1×B, Xi= (X1,…,XB). The respective population parameter coefficients are char-
acterized in the B×1 vector, β= (β1,…,βB)’. Specifying the covariates within the data model allows the
variables to contribute to the overall effect across all locations conditional on Φai,t. This requires the
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assumption that covariates have an overall positive or negative impact and that there is no contrasting
relationship for the covariates between the different locations in the visual field after accounting for
Φai,t (i.e., a covariate does not have a protective effect in one part of the visual field and a deteriorating
effect in a different part). For each individual, the matrix multiplication Xiβ produces a single value,
which is then included in the overall visual field measurement estimate for every location. While it is
possible to include Xiβ in the process model (Section 3.2.2), which would give region specific covariate
effects, we are most interested in the overall effect.

After adjusting for the data reduction portion and covariate portion, the remaining variability is as-
sumed to be normally distributed mean zero with independent variances for each location. That is, εi,
t~MVNL(0, Σε) where Σε ¼ diag σ2ε;1;…; σ2ε;L

h i
. Even though we assume that the basis vectors account

for all spatial correlation, the different error terms for each location allow us to separately model any in-
formation not captured. This is important if some locations are not specifically modeled by the basis vec-
tors. If we were to find posterior estimates for every element in the covariance matrix, we would be

estimating L Lþ1ð Þ
2 parameters. The number of parameters in this situation would grow faster than the

added data through the increase of locations. If covariances were desired, a structure would need to
be implemented to reduce the number of estimates. Because there is no clear way of defining such a
structure in our motivating example, we simplified the covariance matrix to a diagonal matrix.

3.2.2. Latent process (process model). The process model (Eqn (2)) allows for two different compo-
nents: a transition from the previous time point’s latent variables and a random error process. Within
an individual, each specific time point will have a p×1 vector of latent values that is applied to the di-
mension reduction matrix.

Process Model : ai;t ¼ Mai;t�1 þ ηi;t (2)

The transition matrix M describes the one unit evolution of the latent variables in time. In this model,
the matrix (M) will be p×p with the diagonals of the matrix indicating the multiplicative fluctuation be-
tween time points for their specific vector. The off-diagonals indicate how the latent variables are re-
lated. For example, if we had a 4×4 transition matrix (i.e., ncol(Φ) = 4), a positive value on the
second row and third column indicates that the third latent variable has a positive influence in the change
of the second latent variable, assuming that the third latent variable is positive. The transition matrix M
is not required to be symmetric, which means pairwise relationships between the columns are
directionally unique. In the simplest case with the M matrix being the identity, the latent process sim-
plifies to a vector autoregressive random walk.

After adjusting for the latent transition variables, the latent variables are assumed to have independent

normally distributed error terms. That is ηi,t~MVNp(0,Ση), where Ση ¼ diag σ2η;1;…; σ2η;p
h i

.

3.2.3. Prior distributions (parameter model). The parameter model contains the specified prior distri-
butions for the parameters we are estimating. For convenience, conjugate priors, as specified in
Table I, are utilized for ai,t = 0, β, M,Σε, Ση, allowing for increased computational speed through Gibbs
sampling. The prior for the latent variables (a) at time 0 follows a multivariate normal distribution with a
p×1 mean matrix μa and a p×p variance matrix Σa. This prior is identical across individuals. The co-
variates have a multivariate normal distribution prior, with a B×1 mean matrix μβ and a B×B variance
matrix Σβ. The transition matrix for the latent variables, M, uses a multivariate normal prior with mean
μm and variance matrix Σm. The variances for both the locations (Σε) and the latent variables (Ση) utilize

Table I. Prior distributions for model parameters.

Parameter Prior distribution

ai,t = 0 MVNp(μa. t0, Σa. t0)
β MVNB(μβ, Σβ)
M MVNp(μm, Σm)
Σε IWL(Vε, nε)
Ση IWp(Vη, nη)
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conjugate inverse Wishart distribution priors. The statistical code and package for model implementation
are available upon request.

4. Simulation studies

4.1. Computational background

Simulations were conducted to assess the model performance under varying situations. All analyses
were performed in RStudio version 0.98.1091, employing the coda, MASS, and parallel packages
[21]. Gibbs sampling was implemented using the full conditionals for each set of parameters first esti-
mating the latent variables (a) followed by the covariate estimates (β) and concluding with the variances
(Ση, Σε). The transition matrix, M, was set to be the identity simplifying the process model to a vector
autoregressive random walk.

Vague priors were used for all parameters. We assumed multivariate normal priors for the latent var-
iables for a single person at t=0, MVNp(0, 1000Ip) as well as for the explanatory variables, MVNB

(0, 1000IB). The variances were set to be independent with 0 value on the off-diagonals. The priors of
each parameter in both Ση and Σε were assumed to follow inverse gamma priors IG(0.001, 0.001). Three
chains were used for each dataset, and convergence diagnostics were assessed using Gelman and
Rubin’s [22] univariate potential scale reduction factors (PSRF). It is suggested that PSRF 0.975
quantiles less than 1.20 indicate convergence.

Due to the large amount of parameters being estimated per chain, it is computationally overkill to out-
put and import the iterations without previously thinning and removing non-converged areas. With the
amount of simulations performed, manual examination of burn-in and thinning periods was not possible.
Therefore, an alternative computing approach was implemented. The algorithm for estimating the pos-
teriors works as follows. MCMC iterations were performed using Gibbs sampling for 1000 iterations
without thinning after a burn-in of 100 iterations. Data were imported for the location variances (Σε), la-
tent variable variances (Ση), and the explanatory variables (β) from a single chain. Autocorrelations were
calculated within and between these variables, and the smallest lag that had less than 0.5 autocorrelation
was chosen as the thinning value, capped at 100. Using the chosen thinning value, an iterative approach
was implemented. MCMC iterations were run using the last observed estimates for all variables as
starting values across the three chains thinning appropriately until 200 iterations were output. Upon
completion, these iterations across the chains were read in and convergence was assessed for all vari-
ables. If at least one variable did not converge, the process was repeated using the last observed iteration
values as starting values with the same thinning value. This iterative cycle was completed until there was
convergence upon all three chains or until it looped through a maximum of five times, whichever hap-
pened first.

In all simulations, every element of the propagator matrix (Φl,k, for k=1,…,p) was generated from a
normal distribution (Φl,k~N(0, 2.5)) and was assumed known and fixed in the posterior estimation pro-
cess. Two covariates were used in each simulation: one associated with a continuous explanatory vari-
able and one associated with a dichotomous explanatory variable. These covariates were added linearly
and independently from other parameters in the model.

Simulations were performed to validate the model under a complete set of observations. The number
of people was set to be 50, the number of time points to be 10, the number of basis vectors to be 6, and
the number of locations to be 50. There were 150 datasets generated and analyzed for these situations.
These settings were chosen to reflect the attributes of our motivational example. In addition to the 150
simulations performed, 30 additional simulations were conducted, where exactly one of the parameters
(e.g., number of time points) was altered to help understand how the model performs under varying cir-
cumstances. For example, 30 simulations in addition to the original 150 simulations were performed,
where the number of time points was set to be 15 instead of 10 while maintaining the 50 people, 6 basis
vectors, and 50 locations. Analysis time and thinning values were recorded for all simulations.

4.2. Simulation results

For ease of discussion, the summaries of the 150 datasets containing 50 people, 50 locations, 10 time
points, and 6 basis vectors are presented here. Within a simulation, the coverage probability was calcu-
lated for each set of variables (Ση, Σε, β,a ). The average and standard deviation of the coverage prob-
abilities of the four sets of variables values are presented in Table II. The standard deviations reflect how
much variability was observed between the 150 coverage probabilities. The median run time for these
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sets of simulations was 9.2min. Across all four variable sets, the average credible intervals covered the
true simulated variables close to the targeted 95%. The parameters in all simulations converged accord-
ing to the Gelman and Rubin [22] univariate PSRF.

Allowing the simulations to vary across the four different sets of variables confirmed our intuition.
Increasing the number of people, the number of time points, and the number of locations, while reducing
the number of basis vectors, resulted in a reduction in average credible interval widths. The coverage
percentage stayed stable around 95%. This is intuitive due to the extra data provided for people, location,
and time or due to the fewer parameters estimated for the number of basis vectors.

5. Application

5.1. Introduction to Φ and a confirmatory analysis to nerve fiber bundles

Previous research by Garway-Heath, Poinoosawmy, Fitzke, and Hitchings [19] has established six nerve
fiber bundle regions within the central 24° of the visual field (Figure 1). These regions are thought to
have different rates of glaucoma progression.

Empirical orthogonal functions (EOF) basis vectors of the data were created and analyzed using the
baseline values of the 68 individuals who did not have a complete set of data (i.e., those individuals
not used in the analysis). This allows us to attain an estimate of the spatial correlation while minimizing
the possibility of overfitting to our complete set of data. Because the number of locations and individuals
with complete data are fixed, only the number of basis vectors can vary. Based on the simulation results,
caution should be taken for choosing a large number of basis vectors in order to preserve accurate and
precise estimates. In dimension reduction models, there have been several suggested methods for deter-
mining the number of basis vectors to use depending on the method used in formulating the bases.
Hughes and Haran [14] suggest using about 0.10*(number of locations) or fewer basis vectors in anal-
yses when the bases are created using a generalized Moran operator. Others suggest using only basis
vectors associated with eigenvalues greater than one [23]. More simply, because EOF basis vectors have
the property of decreasing variability explained for each consecutive eigenvector, we could specify a
targeted amount of variability we wish to explain in the data (e.g., 70%) and use the first p eivenvectors
until that variability is reached.

The first six EOF basis vectors explain 79% of the original variance and produced similar results to
those observed by Garway-Heath, Poinoosawmy, Fitzke, and Hitchings [19]. Therefore, p was set to
be 6 and is displayed in Figure 2. Six vectors were needed to match the clinically defined regions,
and the seventh EOF basis vector explained less than three percent of the spatial correlation in the data
so the authors felt it was not worth the estimation cost in the model. Positive vector loadings in the basis
vector are displayed in blue with darker shades representing larger magnitude values. Conversely, neg-
ative vector loadings are displayed in red. EOF basis vectors have the property of decreased variability
explained with each successive vector. The first basis vector explains 36% of the variability in the data
and focuses predominately on the upper part of the visual field representing high correlations in this re-
gion. The second EOF basis vector has negative loadings associated with it in the upper part of the visual
field and large positive loadings associated with the lower part of the visual field indicating contrasting
visual measurements between these regions. The third basis vector provides a contrast with negative
values on the left side of the visual field against positive values on the right side of the visual field.
The remaining basis vectors can be interpreted similarly, but intuitive interpretation of the regions gets
more difficult. When we compare these first six EOF basis vectors created from the participants with
glaucoma to the predefined regions as shown in Figure 1, we note consistent patterns.

Due to the similarities observed between the EOF basis vectors and the predefined clinical spatial
fields, a factor analysis using a Varimax criterion was performed on these six EOF basis vectors. The

Table II. Coverage probabilities for variable sets.

Variable set Average coverage probability (SE)

Σε 94.97 (2.86)
Ση 94.67 (8.92)
a 94.65 (0.43)
β 95.67 (16.32)
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six rotated basis vectors are displayed in Figure 3. With the rotation, the loading values became mostly
positive and the majority of locations can be largely represented by a single factor basis vector. Nerve
fiber bundle region 2 appears to be covered in basis vector 3, while nerve fiber bundle region 3 is cov-
ered through basis vector 1. Nerve fiber bundle regions 1, 4, and 5 are represented by basis vectors 5, 4,
and 2, respectively. Also, nerve fiber bundle region 6 can be observed in all the vectors. Thus, there is
likely not to be a large amount of spatial variability in nerve fiber bundle regions 6, due to the fact that it
is not significantly represented in the factor basis vectors. Because the modeling in this specific problem
serves as a confirmatory analysis with this data, the Varimax rotation of the first six EOF basis vectors is
used to create Φ. These basis vectors have more clinical interpretability than the EOF basis vectors and
help confirm the method used in the creation of Φ.

5.2. MCMC specifics

Prior distributions were set to those discussed in the simulation in Section 4.1 for each set of variables.
The data were thinned every 100 iterations as established by the autocorrelation part using the iterative

Figure 2. Visual representation of first six empirical orthogonal function basis vectors of baseline data for 68
participants with glaucoma. Values in parentheses are the proportions of variance explained by that EOF.

Figure 3. Visual representation of first six empirical orthogonal function basis vectors after rotation using a
Varimax criterion of baseline data for 68 participants with glaucoma.
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estimation procedure discussed in Section 4.1, and 350 iterations were output for each loop. Conver-
gence occurred immediately (1000 burn-in; 35 000 iterations; thinned 100). The entire analysis took
83min.

For this analysis, there were 24336 observations (52 people × 52 locations ×9 time points). Sensitivity
analyses were performed increasing the strength of the priors for the location and latent variances.
Across the analyses, the means, standard deviations, and 95% credible intervals do not vary much, re-
gardless of the prior strength (data not shown). We notice an increase in estimate and credible interval
for the last two latent variances with increased prior strength, but not to a great magnitude. With the
large amount of outcome information, hyperparameters and hyperpriors on the variance terms do not
play a large influence in the posterior distribution unless they are specified to be strongly informative
(e.g., prior for variance to be IG(10, 10)).

5.3. Covariate results

Prior distributions, posterior means and standard deviations, and the 95% credible intervals for selected
variables as shown in Table III are presented in Table IV. The parameter estimates can be interpreted as
how the covariates relate to the remaining variability after accounting for the dimension reduction and

Table IV. Prior distributions and parameter estimates for analysis of glaucoma progression.

Parameter Prior distribution Posterior mean (SD) 95% credible interval

σ2ε;1 IG (0.001, 0.001) 15.35 (1.11) (13.36, 17.60)
σ2ε;11 IG (0.001, 0.001) 36.35 (2.59) (31.54, 41.74)
σ2η;1 IG (0.001, 0.001) 1.45 (0.33) (0.90, 2.15)
σ2η;2 IG (0.001, 0.001) 1.33 (0.24) (0.91, 1.85)
σ2η;3 IG (0.001, 0.001) 2.20 (0.52) (1.36, 3.27)
σ2η;4 IG (0.001, 0.001) 1.27 (0.26) (0.86, 1.83)
σ2η;5 IG (0.001, 0.001) 0.46 (0.18) (0.03, 0.86)
σ2η;6 IG (0.001, 0.001) 0.48 (0.26) (0.04, 1.03)
β1 (Glaucoma POAG) Normal (0, 1000) 11.92 (0.41) (11.19, 12.65)
β2 (Glaucoma NTG) Normal (0, 1000) 17.80 (0.41) (16.91, 18.73)
β3 (Males) Normal (0, 1000) 5.30 (0.36) (4.59, 6.00)
β4 (Surgery) Normal (0, 1000) 5.94 (0.45) (5.01, 6.81)
β5 (Mean deviation mild) Normal (0, 1000) 11.88 (0.37) (11.15, 12.63)
β6 (Optic disc hemorrhage) Normal (0, 1000) �1.24 (0.53) (�2.25, �0.19)
β7 (Age) Normal (0, 1000) �0.46 (0.02) (�0.50, �0.42)
β8 (Average retinal thickness) Normal (0, 1000) �0.23 (0.02) (�0.26, �0.20)
a1,1,1 Normal (0, 1000) 3.12 (1.90) (�0.77, 6.61)
a1,6,1 Normal (0, 1000) 1.17 (1.56) (�1.90, 4.08)

Table III. Baseline demographic for participants with glaucoma.

Variable Glaucoma baseline demographics

Mean average retinal thickness (SD)
67.2 (14.7)

Mean age (SD)
65.4 (9.5)

Glaucoma type (%) NTG (34.0%)
POAG (41.5%)
OTHER (24.5%)

Gender (%) Male (37.7%)
Female (62.3%)

Optic disc hemorrhage (%) Yes (18.9%)
No (81.1%)

Surgery (%) Yes (30.2%)
No (69.8%)

Mean deviation category (%) Mild (54.7%)
Moderate (45.3%)
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latent variable portion. A positive parameter estimate indicates that higher observed explanatory values
are associated with overall higher outcome values, on average. On the contrary, negative parameter
estimates indicate that higher observed explanatory values are associated with overall lower observed
value in individuals. All of the parameter estimates significantly contribute to the remaining unexplained
variability after accounting for the dimension reduction portion. Participants with Primary Open-Angle
Glaucoma or Normal-Tension Glaucoma glaucoma, being male, having surgery, and those considered to
have a mild mean deviation had higher overall average decibel measurements, while those with an optic
disc hemorrhage, who were older, and who had a higher average retinal thickness had lower overall
average decibel measurements, on average. The covariates are on the individual level, so inferences
are made about an overall increase or decrease in the visual field instead of a location-specific interpre-
tation. Incorporation of covariates in the DROIIDS model helps account for differences in average visual
field decibel measurements between people and reduces the remaining variability.

5.4. Rates of change analyses

One beneficial product of this spatio-temporal model is the smoothed estimates of the overall process.
The estimated latent variables and population parameter estimates can be utilized to find posterior pre-
dicted mean estimates within a person for each time point across locations. Spatio-temporal modeling
helps capture the smoothed underlying trend, while measurement variability are captured in Φ, the co-
variates, and in the error terms.

The raw and smoothed decibel measurements visual representation plots at each time are displayed in
Figure 4. Figures 4a and 4c represent the raw and estimated visual field measurements for an individual
in the study, while Figures 4b and 4d represent the raw and estimated visual field measurements for a
different individual in the study. For the first individual, we can see lower visual field measurements
in the lower left part of his or her visual field (Figure 4a). We notice fluctuation over the nine visits in
this region, but we do observe an overall deterioration in visual field measurements over time. Through

Figure 4. Raw and estimated decibel measurements at each location for two individuals. The raw decibel mea-
surements for the nine time points are presented for participant 3004 in (a) and participant 3011 in (b). The pre-

dicted values for the nine time points are presented for participant 3004 in (c) and participant 3011 in (d).
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our model, the visual field measurement estimates capture this pattern and smooth the entire surface
(Figure 4c). Contrary to the first person, the second individual in Figures 4b and 4d has glaucoma pro-
gression in the upper left part of his or her eye (Figure 4b). Again, the DROIIDS model is able to smooth
these variable observations and provide a more realistic underlying visual field measurement trend that is
occurring (Figure 4d).

At each location, a simple linear regression line can be fit to the T smoothed visual field measurement
estimates by using time, t=1,…,T, as predictors. This will produce a smoothed linear estimate of dete-
rioration over time representing an average rate of change throughout the visits. Clinicians can use these
rates to determine the areas within the central 24° of the visual field that have the fastest glaucoma pro-
gression. Two example rate plots are displayed in Figure 5. Figure 5a shows a high progression in the
lower left part of her visual field for the individual shown in Figures 4a and 4c, while the majority of
the visual field has high progression for the individual in Figures 4b and 4d. For the first individual
(Figure 5a), if we compare these high rates of change with the pre-defined nerve fiber bundle regions
presented in Section 5.1 (Figure 1), we notice that regions 4 and 5 are the main areas affected in this
individual.

These rates have great potential to clinicians and researchers. If there are medications that have a
larger protective effect in certain nerve fiber bundle regions compared with others, then these plots
would help clinicians determine the best prescription for the individual. In addition, clinicians and re-
searchers can compare the progression rates and areas affected with individual demographics to deter-
mine if there are certain risk factors associated with certain patterns of progression.

6. Discussion

Glaucoma is a blinding disease affecting people’s vision with no known cure. However, through collab-
orative research, many treatments have been developed that helps slow the progression of the disease.
Using data from the Mechanism of Parametric Variability study, we were able to measure the progres-
sive rates of changes among the 52 participants with glaucoma in the study who returned at every
follow-up. Analyses were performed using our introduced DROIIDS model. The model was designed
in a Bayesian Hierarchical framework that incorporates a dimension reduction portion and individual
baseline covariates. Through these two parts, the data were smoothed and rates of change were calcu-
lated for each location. These rates have potential to help clinicians process the glaucoma progression
of subjects at return follow up visits.

The dimension reduction matrix was created using a Varimax rotation on the first six EOF basis
vectors of the data. The variable regions highlighted in each basis vector are close to the pre-
defined nerve fiber bundle regions introduced by Garway-Heath et al. [19]. This resemblance helps
support the method chosen to create the dimension reduction matrix. Individual covariates are in-
corporated to help explain residual variability not captured specifically by the dimension reduction
matrix.

Missing data are inevitable in trials, and numerous methods have been proposed to handle the
missingness over the years. Less than half (43%) of the participants with glaucoma had a complete
dataset in the current analysis. Incorporating a mechanism to handle the missingness within the model
will allow us to utilize all information collected and is part of our future research.

Figure 5. Rates of change plots for participant 3004 (a) and participant 3011 (b).

J. VANBUREN ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 5210–5221

5220



Propagator and transition matrices were created and were then fixed in this current analysis. If there
were both a sufficient sample size and a large number of repeated measurements on subjects, then these
matrices could be estimated in an iterative step with the other parameters.

The model developed within this manuscript is designed to better understand, both individually and
epidemiologically, the direction and rate of disease progression. Through the incorporation of multiple
individuals’ datasets, the model was able to account for excess variability in the data. Clinicians can use
the model results to help determine the best prescription for a susceptible individual.
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