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A B S T R A C T

In the last decades, major advances in the language sciences have been built on real-time measures of language
and cognitive processing, measures like mouse-tracking, event related potentials and eye-tracking in the visual
world paradigm. These measures yield densely sampled timeseries that can be highly revealing of the dynamics
of cognitive processing. However, despite these methodological advances, existing statistical approaches for
timeseries analyses have often lagged behind. Here, we present a new statistical approach, the Bootstrapped
Differences of Timeseries (BDOTS), that can estimate the precise timewindow at which two timeseries differ.
BDOTS makes minimal assumptions about the error distribution, uses a custom family-wise error correction, and
can flexibly be adapted to a variety of applications. This manuscript presents the theoretical basis of this ap-
proach, describes implementational issues (in the associated R package), and illustrates this technique with an
analysis of an existing dataset. Pitfalls and hazards are also discussed, along with suggestions for reporting in the
literature.

Introduction

A fundamental problem in psycholinguistics is time. Language un-
folds over time and the cognitive processing has its own dynamics.
Consequently, our understanding of language is built in part on
methods that assess cognitive processing as it unfolds over time. Such
methods include Event Related Potentials or ERPs (Osterhout,
McLaughlin, & Bersick, 1997; Swaab, Ledoux, Camblin, & Boudewyn,
2012), Magnetic Encephalography or MEG (Frye, Rezaie, &
Papanicolaou, 2009; Schmidt & Roberts, 2009), eye-tracking in the
Visual World Paradigm (Allopenna, Magnuson, & Tanenhaus, 1998;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995) and mouse-
tracking (Spivey, Grosjean, & Knoblich, 2005).

While the behavioral, methodological and theoretical grounding of
such approaches has developed substantially, our ability to statistically
analyze such time series has lagged. Standard statistical techniques are
appropriate for detecting that there was a difference between two
timeseries in a particular timewindow, and can compare other aspects
of the timeseries such as the slope or asymptotes. However, it is much
harder to identify with precision (and appropriate statistical certainty)
that there is a difference in two timeseries when the timewindow cannot
be specified in advance (much less isolate the time at which a difference

occurs). This paper presents a new method designed to address this
goal. We focus on the analysis of typical time series data from the Visual
World Paradigm (VWP: Tanenhaus et al., 1995), building on recent
analytic approaches developed for such data (Farris-Trimble &
McMurray, 2013; McMurray, Samelson, Lee, & Tomblin, 2010;
Scheepers, Keller, & Lapata, 2008). However, this approach will likely
be useful with any sorts of timeseries data in which the timeseries can
be captured as some parameterized function.

A formal presentation of this approach can be found in Oleson,
Cavanaugh, McMurray, and Brown (2017). They demonstrate its effi-
cacy with a retro-active analysis of a prior study (Farris-Trimble,
McMurray, Cigrand, & Tomblin, 2014) and with a series of Monte-Carlo
analyses that evaluated the likelihood of falsely detecting an effect
(alpha) and of correctly detecting an effect (power). The present
manuscript expands on this in several ways. First, we offer a conceptual
overview of this method for the psycholinguistic community, with a
special emphasis on statistical issues most prominent in psycho-
linguistics, and we discuss specific issues in using and reporting this
technique, which were not addressed in this prior study. Additionally,
and most importantly, we present a newly developed R pack-
age—BDOTS—that implements the technique and adds a number of
features (both in terms of usability, and in terms of the underlying
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analytic technique) that had not been developed in the earlier statis-
tical/theoretical work.

We start by briefly describing the VWP and the type of data it
usually generates. We then describe existing techniques for such data.
Next, we present our own approach, starting with a conceptual over-
view, and documenting how to use this method step-by-step to illustrate
a number of sophisticated features in the R package. Finally, we end
with a discussion of the innovations and limitations of this method and
with guidelines for appropriate use and reporting.

The Visual World Paradigm

In typical instantiations of the Visual World Paradigm (VWP), par-
ticipants hear spoken instruction to manipulate or select one of several
visual objects either on a computer screen or in the real world (see,
Salverda, Brown, & Tanenhaus, 2011, for a review). Objects represent
possible competing interpretations of the auditory signal that will be
briefly considered before being ruled out. To complete the task, parti-
cipants must typically fixate the objects (e.g., they need to know where
the object is before they can click on it) and, consequently, their fixa-
tions to each object at any given point in time—fixations which are
typically initiated before the overt response—indicate something about
how strongly they are considering that interpretation.

In classic versions of this paradigm used to study single word re-
cognition (Allopenna et al., 1998; McMurray et al., 2010), participants
might hear a word like lizard while viewing a screen that contains a liver
(a cohort, which overlaps with the target word at onset), a wizard (a
rhyme, which overlaps at offset) and a necklace (which is phonologi-
cally unrelated; see Fig. 1A). Here fixations to each object can be
considered an estimate of how strongly that class of items is being
considered (how active it is). Fig. 1B shows a typical pattern of fixa-
tions. Within about 200milliseconds, participants fixate both the target
and cohort. This delay corresponds to the amount of time it takes to
plan and launch an eye-movement (Viviani, 1989); consequently, these
early fixations are driven by only the earliest portion of the stimulus (li-
) and are directed to both objects. Several hundred milliseconds later,
more of the word is heard, and the target starts to diverge from the
cohort. However, as the complete word unfolds, emerging overlap with
the rhyme object may lead to some partial fixations. By the end of the
timecourse, typically only one object (the target) is being considered.

These timeseries are typically constructed by averaging within time-
slices, across trials. By averaging across many trials, within small time

slices, we can compute an estimate of how the probability of fixating a
given object gradually changes over time. While such data are popu-
larly termed “proportions of fixations” (or some variant), they are really
the proportion of trials on which the participant is fixating an object at a
specific time.

There are a variety of approaches for examining such timeseries
statistically. But before we discuss them it is important to describe a
number of key features of the underlying data—many of which are
glossed over by existing approaches. First, underlying these densely
sampled timeseries is an auto-correlational structure. People cannot
move their eyes every 4msec (a typical sampling window for many eye-
trackers) – fixations usually last 200–300msec. The smooth gradual
changes in the function derive from averaging many series of ballistic
saccades, and that means that adjacent timewindows are almost always
in part the product of the same physiological events.

Second, as is typical in most psycholinguistic paradigms, these
functions are a product of sampling from multiple random factors
(Baayen, Davidson, & Bates, 2008; Clark, 1973) – typically subject and
item (words), but often other things like talker. Finally, this data is
probabilistic, but it does not derive from a binomial distribution. Rather
at a fundamental level it is a multinomially distributed (since there are
typically more than two options on the screen).

As we describe shortly most existing analytic approaches for VWP
data ignore one or more of these factors in the interest of tractability,
and the proposed approach does not overcome all of them. Nonetheless
it is important to raise these issues both as a part of evaluating the
existing approaches, and in developing and understanding our pro-
posed approach.

Existing Analytic Approaches for VWP and other timeseries data

The present project developed a statistical tool to (1) detect differ-
ences in two timeseries (as in the VWP) when the timewindow is un-
known in advance and (2) to offer a precise characterization of the
timewindow in which a difference occurs. We now review the existing
techniques for analysis with an eye toward their ability to accomplish
these goals.

Area under the curve
The earliest and still most widely used method of analysis for VWP

data is the area under the curve (AUC) approach. Here, the dynamics of
the timeseries are typically discarded, and in each condition, the

Fig. 1. (A) Sample display showing those same four competitors. Note the text is not present on the screen. (B) Looks to the four visual referents (target, cohort,
rhyme, unrelated) as a function of time in a standard version of the VWP.
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experimenter computes the average proportion of fixations within some
fixed timewindow. The timewindow is arbitrary, but researchers often
choose windows based on properties of the stimulus, prior experiments,
or the overall shape of the function (e.g., when it reaches an asymp-
tote). Nonetheless, the justification of the specific timewindow (on
theoretical or empirical grounds) is an important methodological issue
raised by this technique. The concern is that this offers too many re-
searcher degrees of freedom, leading to spurious significant effects (see
Bakker, van Dijk, & Wicherts, 2012; Simmons, Nelson, & Simonsohn,
2011, for broader discussion of the issue of researcher degrees of
freedom). However, when the time-window is well justified and spe-
cified in advance, AUC is still useful. It is straightforward and has the
added bonus of being able to account for multiple random effects using
separate item and subject analyses, or with mixed models including
both effects.

AUC has little to offer with respect to the problem posed here. As
this approach require the timewindow to be specified in advance, a
timewindow that is not of specific interest a priori cannot be analyzed.
Moreover, it is not advisable to use multiple timewindows (though it is
occasionally used for lack of better options, e.g., Watson, Tanenhaus, &
Gunlogson, 2008), as the likely possibility that one or more fixations
span both windows means that the two windows are not mathemati-
cally independent (though see, McMurray, Tanenhaus, Aslin, & Spivey,
2003). Thus, AUC may accurately detect that there was an effect, but it
cannot do so unless the timewindow of interest can be defined in ad-
vance. Moreover, it has few options for detecting when an effect occurs
(within that timewindow).

Saccade/fixation components
A second, and less common, option is to identify specific compo-

nents of the fixation record for analysis. For example, the duration of a
particular fixation (McMurray, Aslin, Tanenhaus, Spivey, & Subik,
2008), the latency to look at an object (McMurray, Tanenhaus, & Aslin,
2009), or the raw number of fixations (Blumenfeld & Marian, 2007; Ju
& Luce, 2004). This overcomes some of the issues of using averaging
over discrete trials that come up with AUC metrics; and such measures
may show a more Gaussian distribution, making them more appropriate
for linear models. However, they are also highly selective and focused,
and therefore can have insufficient theoretical motivation for selecting
particular measures. For example, increased activation for a competitor
could have differential results both on the likelihood of fixating it in the
first place, and the likelihood of staying longer once the participant is
there. By emphasizing only one component, crucial effects may be
missed; though if one were to examine all possible components, the
converse problem of multiple comparisons and the more serious issue of
p-hacking comes into play. A serious problem then is that currently
there are no linking functions available for identifying such components
raising the possibility of a fishing expedition. Perhaps more pro-
blematically, an underlying experimental difference may exert weak
effects on both the likelihood of fixating and the likelihood of staying,
but these effects are not robust enough to be seen individually, making
it difficult to detect. In terms of our primary question, it is possible to
develop such measures to detect effects at various times, since these
measures generally respect the discrete series of events, and auto-
correlation structure can be incorporated into such models.

Onset detection
A number of recent studies have investigated the time at which

various properties of the stimulus affect the fixation record (McMurray,
Clayards, Tanenhaus, & Aslin, 2008; Reinisch & Sjerps, 2013; Toscano &
McMurray, 2012). In many ways, this complements the goals of the
present project. In onset detection approaches, the primary concern is
when an effect begins relative to the onset of some other effect (or that
same effect in another condition). In contrast, we ask here whether
there is an effect at all, and then seek to identify the timewindow over
which it can be observed.

The analytic approaches that have been adapted to this problem
largely assume that there is an effect (somewhere in the timecourse)
and focus on detecting its onset. These approaches borrow from the ERP
literature (Miller, Patterson, & Ulrich, 1998). Here, the dominant
paradigm is to compute some measure of the effect of some condition at
each point in time – for example for a condition with two levels, this
could be a difference; for a multi-level condition, it could be a regres-
sion slope. The onset is then detected by setting an arbitrary threshold
relative to the maximum (e.g., when the effect crosses 20% of its
maximum) and then computing the time (for each subject) at which
each effect crosses this threshold.

This procedure can easily be derailed if the timecourse of the effect
is fluctuates over time, thus it requires a lot of data per subject per
condition to achieve smooth timecourses. Consequently, as in the ERP
literature, data are often jackknifed prior to onset detection. This means
that the timecourse function is averaged across all participants except
one, the onset is obtained, and then the process is repeated excluding
the next subject (with appropriately more conservative test statistic).
This is a flexible procedure that can be extended in various ways. For
example, there are more robust ways of detecting the onset of effects
(Mordkoff & Gianaros, 2000), and researchers can tie onset measure-
ments to precise theoretical notions like immediacy and competition
(Farris-Trimble et al., 2014).

In terms of the general concerns regarding analysis of VWP data,
onset detection techniques have limitations and some strengths. They
avoid the issue of multinomial responses, by collapsing the multinomial
data into a continuous time to ask when effects occur. However, they
presume that there is an effect at all whose onset latency can be mea-
sured, and researchers rarely compute omnibus-style tests first to detect
an effect prior to computing its onset. When this is done at all, it is
typically done with AUC approaches (with caveats described above).
Even if the presence of an effect is known, this technique does not offer
a unified approach for the question of when effects occur because it is
limited, at this point, to onset detection. While it might be adaptable to
offset detection as well, it is not clear how it could handle situations in
which effects do not offset (e.g., they persist throughout the trial) or
cases in which there are multiple onsets and offsets of an effect. Perhaps
more importantly, it contains no way of evaluating the significance of
the effect itself (in addition to difference in its timing).

Timeseries analysis
An increasingly popular approach to VWP data is to fit some typi-

cally nonlinear function of time to visualizations of the data as in Fig. 1.
The parameters of the functions can then be used as descriptors of how
the data change over time. These can be analyzed either with tradi-
tional sorts of models (e.g., GLM), or the functions can be integrated
into mixed effects models. The first such approach (Mirman, Dixon, &
Magnuson, 2008) proposed to use orthogonal polynomials as the basis
of the analyses. These are highly advantageous because they can be fit
with linear methods, and they can easily be integrated into mixed
models which capture both subject- and item-effects. However, at the
same time, polynomial functions do not offer a great parameterization
of the typical shape of VWP data. For example, the looks to the target
shown in Fig. 1A would require approximately 6–7 polynomial terms to
capture, and the parameters themselves do not describe any meaningful
aspect of the data. Thus, these functions offer license to say that there
was an effect on the timecourse, but may not offer any more precise
description. Perhaps more problematically, to overcome this, re-
searchers often choose narrow timewindows where the function can be
described with lower order polynomials (cubics, quadratics), but this of
course introduces researcher degrees of freedom.

An alternative approach is to use nonlinear functions to capture
more meaningful aspects of variation in these timeseries (Farris-
Trimble & McMurray, 2013; McMurray, Clayards, et al., 2008;
Scheepers et al., 2008). For example, target fixations can be fit by a
four-parameter logistic function that captures the asymptotes, slope and
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cross-over point. These parameters offer more meaningful descriptors of
the data, and the functions can often better approximate the data (than
very high order polynomials). There are concerns about whether these
parameters can be treated as independent (e.g., do slope estimates
differ when the asymptotes are close together), but as we discuss below
these can often be solved with different parameterizations of the
function. These functions can typically be fit easily to individual par-
ticipant data (see https://osf.io/4atgv/), and they can be jackknifed as
well (Apfelbaum, Blumstein, & McMurray, 2011). However, they have
not yet been integrated into a mixed effects framework which would
enable simultaneous subject- and item-effects. Instead researchers ty-
pically estimate the parameters of the functions and analyze those with
more traditional, GLM approaches. This ignores within-subject varia-
bility when computing the significance of effects. However, the lack of
multi-level approaches with such functions is a failure of implementa-
tion, not a fundamental limitation.

Neither the polynomial nor nonlinear approach entirely deals with
the probabilistic or multinomial nature of the data; however transfor-
mations like the empirical logistic could be applied prior to fitting the
functions (which could improve the quality of polynomial fits), or to the
relevant parameters after fitting (e.g., Farris-Trimble et al., 2014), and
prior to analysis. It is also important to note that nonlinear functions
that are good representations of subject averaged curves, may not ne-
cessarily be accurate representations of the true trial-by-trial response
curves (Estes, 1956). Thus inference is required at the subject-averaged
response level, rather than an individual trial response level. However,
this is relevant to all analysis approaches of VWP data that base model
fitting on the aggregate of a subject’s trials. Interpretation at the trial
level is possible when modeling individual trial responses (Vandeberg,
Bouwmeester, Bocanegra, & Zwaan, 2013).

Both the polynomial and nonlinear approaches offer a reasonable
way to characterize the timecourse of fixations to individual objects,
and comparing the parameters of the function across conditions can
permit researchers to make inferences about how they differ (e.g., two
conditions peak at different heights, show different rates of growth,
etc.). But they do not, in most cases, permit direct inferences about
when conditions differ, and sometimes they can be ambiguous. For
example, in Farris-Trimble et al. (2014), participants heard a target
word while fixations to cohorts and rhymes were monitored. Here,
there was a clear difference between 500 and 1000msec (see their
Fig. 1), but parametrically this would be described both as a difference
in the slope (rate of change) and the crossover (the time at which the
curve crosses 50%). In this case, it is possible that neither parameter by
itself would be significant, or that both would be. However, this basic
observation about when the difference may be significant cannot be
captured.

One could compute confidence intervals around such functions to
answer this question. However, systematic methods for doing this have
not yet been developed, and it could be particularly difficult for non-
linear functions. This approach also has a large issue with significant
family-wise error as it essentially amounts to repeated t-tests across
time slices. The present project overcomes these limitations with new
ways to compute confidence intervals for nonlinear functions, and a
procedure for controlling the family-wise error.

Nonparametric approaches based on clustering
Cluster based permutation testing (Bullmore et al., 1999; Maris &

Oostenveld, 2007) offers another approach that has become increas-
ingly popular for the VWP. These clustering techniques are intended to
directly address the question of detecting if two curves differ when the
time is unknown. They derive from methods like EEG and MEG which
also generate autocorrelated timeseries. However, unlike VWP data,
such curves do not often follow a parametric function, and there may be
additional dimensions of auto-correlation (e.g., among adjacent sensors
in space).

In cluster based permutation testing. This the researcher computes a

test-statistic at all time points, and groups adjacent (significant) tests
into a single cluster. This controls family wise error by replacing in-
dividual tests with a single test for the cluster (the average of the test-
statistics within the cluster). Test statistics are computed by boot-
strapping individual curves and computationally calculating a permu-
tation test statistic. This avoids making assumptions as to the under-
lying timecourse curve for an individual, or their statistical distribution
(which is potentially useful for VWP data which are not Gaussian dis-
tributed). Such an approach is currently implemented in the
eyetrackingR package, making it available to researchers using the
VWP, and it has been used to analyze visual world data for several
studies (Barr, Jackson, & Phillips, 2014; Oakes, Baumgartner, Barrett,
Messenger, & Luck, 2013; Weighall, Henderson, Barr, Cairney, &
Gaskell, 2017; Wu, Barr, Gann, & Keysar, 2013).

The non-parametric approach is particularly advantageous for brain
imaging data, which is variable and does not follow an easily defined
curve. But it may not be ideal for applications like the VWP, in terms of
power to detect differences between various groups. Visual world data
(at least as applied to single-word recognition) tend to follow one of
two types of parametric curves (described below in function im-
plementation details of BDOTS); consequently, a non-parametric ap-
proach may lose some statistical power in the scenario where the
parametric curve is a good fit to the true, underlying function for all
subjects. Additionally, because this approach performs a permutation
test to calculate a test statistic, computation time can become an issue
in cases where there are a large number of total trials. Moreover, this
approach offers no way to simultaneously model subject and item level
variance, though these could be modeled separately with an F1/F2
analysis. But perhaps more importantly, this approach offers only
“weak” control of family-wise error. Rather than controlling for error in
many tests, it reduces the number of tests. Consequently, as Maris and
Oostenveld admit, it may have reduced power for detecting second and
third clusters with smaller effects. Importantly, no Monte-Carlo ana-
lyses have been run to systematically evaluate either Type 1 (Family-
Wise) error or power, so it is unclear if reducing the number of tests by
clustering accomplishes this goal. In that light, the clustering procedure
has a number of free-parameters and it is unknown what effects they
may have on the statistical properties. That said, the present approach
shares with cluster-based permutation techniques the insight that non-
parametric approaches may be useful for estimating variance, and that
family-wise error may be controlled by attending to the fact that tests
that are adjacent in time (or space) are highly correlated and therefore
not independent.

Overview of BDOTS

Our procedure is termed the Bootstrapped Differences of Timeseries
(BDOTS). A complete mathematical treatment is provided in (Oleson
et al., 2017), and as part of developing this report, we have created an R
package of the same name that is now available for download on the
CRAN server. This R package transformed BDOTs from the primarily
theoretical approach reported in that earlier manuscript to something
usable by the psycholinguistics community. As we detail here, the
package implements several changes to the underlying statistical
method designed to make it more powerful. The remainder of this paper
starts by describing the conceptual underpinnings of BDOTS. We then
walk through an implementation to illustrate the range of options. Fi-
nally, we discuss some limitations and directions for future develop-
ment.

BDOTS starts with the simplest approach: a comparison between
two conditions at each time point. However, there are several issues
that arise when attempting to run many t-tests on raw data. Variability
in the data makes it possible to encounter inconsistent results (e.g. two
curves that are significantly different at every point from 500 to
1000msec except for at 800 and 644msec). This makes for a difficult
interpretation of the results. More importantly, given the dense time
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sampling of eye-tracking and/or ERP data, repeated test statistics can
inflate family-wise type I error.

Additionally, there are often other factors of interest that cannot be
addressed as a test of differences at individual time points, such as when
the two groups peak or the time it takes to reach peak. These can be
accomplished with curve fitting approaches that directly estimate these
properties (Farris-Trimble & McMurray, 2013; Farris-Trimble et al.,
2014), but it would be useful if this could be accomplished within the
same statistical framework.

BDOTS addresses these problems in four parts. First, we use parti-
cipant specific fitted curves to capture the shape of the functions. This
helps to smooth the data (minimizing idiosyncratic patterns of sig-
nificance). It also offers a parametric description of the functions, and
the standard errors of the parameters take into account where this
description may not fully account for the data. While BDOTs borrows
these strengths of a parametric approach, our analysis does not depend
a great deal on the specific parameter estimates or even the specific
functions. Consequently, the dangers of overfitting are reduced since
we are not trying to draw statistical inference on the basis of individual
fits.

Second, we use a bootstrapping procedure to estimate the standard
error of the mean at each time point. Third, we use these standard er-
rors of the function to conduct 2 sample t-tests at every time point.
Fourth, we control for family-wise error with a modified Bonferroni
corrected significance level which takes advantage of the inherent au-
tocorrelation of the test statistics to avoid being overly conservative.

This combines many strengths from the prior approaches. We
leverage curve fitting and timeseries approaches to obtain accurate
descriptions of the function (and its variance). As in permutation tests,
we use non-parametric statistics to capture the error distribution
without inappropriately assuming a Gaussian distribution. And our
approach to family-wise error takes the insight from the cluster based
approaches that adjacent tests are not independent, though rather than
collapsing them we derive an explicit (“strong”) alpha correction.

Conceptual implementation

The first part of our method estimates fitted curves for each subject.
The actual function of the fitted curves doesn’t matter, as these curves
are only used to bootstrap the population-averaged curves and are
subsequently thrown out. Consequently, any function that is a reason-
able fit to the data could be used (e.g. polynomials, logistics, etc.). The
current R package implements two common non-linear functions used
in psycholinguistics. Along with estimates for the function parameters,
we obtain subject-specific estimates of the covariance matrix for the set
of parameters, which captures within-subject variance of the parameter
estimates (trial-by-trial variance should be reflected in the smoothness
of the subject-averaged curve and will have an effect on these estimates
of the variance for subject-specific parameters). Note that if a subject’s
curve is not reasonably fit by the defined function, the standard de-
viation estimates for the parameters have the potential to be extremely
large. Thus, as with all non-linear curve fitting, it is important to vi-
sually compare fitted curves to actual data, and the BDOTS R package
has tools for enabling this.

Second, once we have estimated parameter values and standard
errors for each subject, we draw random samples for each subjects’
curve by drawing random values for the vector of parameters (from a
distribution with the mean vector and variance matrix specified by the
estimates from the fitter). We then use the functional definition of the
curve to acquire an observation estimate at each time point for the
resampled participant, a form of parametric bootstrapping. At each
iteration of the bootstrap (at each random sample), we average all the
sampled individual curves into a population average for each group.
This provide an estimate of the bootstrapped mean difference and
standard error between the groups at each time point to perform t-tests.

Notably, the specific functions used to fit the curves are discarded

after the bootstrap step – all that is retained is the estimated difference
and its standard errors. This allows any function with an adequate fit to
be used and one can potentially use different functions for different
conditions or for different subjects. Superficially this may appear pro-
blematic, but here the goal is not to make statistical inferences on the
basis of individual fits; but rather to accurately characterize each sub-
ject’s data, so that they can be resampled for boot-strapping.

The use of fitted curves provides three critical advantages over
bootstrapping raw data. First, the SEs of the parameters of the fitted
curves are sensitive to within-subject variance, and this can be used as
part of the bootstrap. Second, the curves offer a form of smoothing
eliminating the issue of obtaining small regions of insignificance (or
significance). Finally, variation in the parameters can be mapped to the
relevant psychological dimensions. For example two conditions which
target fixations are simply delayed by 20msec will appear as a small
difference in the cross-over parameter (on the x- or time-axis) as op-
posed to a large, but short lived difference, in the proportion of fixa-
tions (the y-axis).

Finally, after bootstrapping, we calculate t-statistics at every ob-
served time point (or, potentially, unobserved time points along the
observed timecourse). The large number of tests performed for a typical
dense timeseries demands some sort of family-wise correction. As de-
scribed cluster-based approaches bypass this issue by simply collapsing
comparisons into clusters. However, this is a somewhat weak form of
control for family-wise error where a stronger approach may be needed.

In a traditional Bonferroni correction, the alpha is modified by di-
viding it by a constant value (the number of comparisons, C). However,
with so many comparisons this will be overly conservative. A typical
VWP timeseries may sample to 1500–2000msec at a 4msec sampling
window, resulting in 375–500 comparisons—yielding a small α∗ which
is likely too small to have much power. However, a traditional
Bonferroni correction also fails to take into consideration the auto-
correlation one would expect when the underlying data is a continuous
timeseries (not a set of truly independent tests). That is, in a timeseries
with 500 points, there are not really 500 independent comparisons, since
adjacent points will be related. Consequently, the probability of a type 1
error is greater than α/N and a Bonferroni type correction is likely to be
far more conservative than necessary. Therefore, by estimating the
autocorrelation between test statistics, we can use this to estimate an
adjusted α∗ value that is less conservative but still maintains an overall
family-wise error level at a specified α.

Oleson et al. (2017) derive an estimate of α∗ that captures these
intuitions and this is implemented in BDOTS. They demonstrate that as
the autocorrelation between test statistics increases, α∗ increases to
near .05, while a decreasing autocorrelation reduces α∗ to the Bonfer-
roni correction. An alternative solution to this problem is to use coarser
adjustments like False Discovery Rate (FDR; Benjamini & Hochberg,
1985). However, there are some caveats to this: FDR has a less con-
servative correction of the test statistic but achieves this by accepting a
certain proportion of Type I errors in the series of tests. This makes
interpretation more difficult, particularly at the edges of the regions of
difference where the test statistic will be closer to the threshold for
significance (and the likelihood of a Type I error increases). Moreover,
it may be more difficult to justify this approach if another solution is
available. Importantly, this alpha correction is entirely independent of
the bootstrap and curve fitting procedure, and can conceivably be used
with any timeseries of statistical comparisons (and it can be called as an
independent function within the BDOTS package to enable such use).

In addition to testing for differences in the timeseries, the bootstrap
iterations can also calculate the significance of group-wise differences
in the parameters. During the same resampling, we estimate the overall
mean and standard error estimates of each parameter for each group.
Using these values, t-tests can be performed that are more powerful
than a typical t-test using only the subject-specific parameter estimates
because we are able to incorporate the subject-specific standard errors
of the parameter estimates.
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Implementation

We next describe BDOTS’ implementation at two levels. First, as
with any complex statistical tool experimenter decisions must be made,
and several assumptions are made by the package. These details can
matter greatly for outcomes (particularly with respect to non-linear
curve fitting), and BDOTS users should aware of them. Second, along
with these conceptual issues related to implementation we include R
code detailing how to implement the package.

Step 1: Selecting a function

Currently BDOTS is implemented with two functions based on prior
work (Farris-Trimble & McMurray, 2013; McMurray et al., 2010): a 4-
parameter logistic and a double Gaussian. The 4-parameter logistic is a
good approximation to an individual fixation curve for fixations to
target objects where there is a constant period of low looks, followed by
an “S” shaped increase in looks, and ending with a constant period of
high looks (Fig. 2). We use the following parameterization of the lo-
gistic function where Bi describes the baseline for subject i; Pi describes
the plateau value; Xi describes the crossover point; Si describes the slope
at the crossover point; and t defines time.
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This particular parameterization has two advantages over tradi-
tional forms of the logistic. First, because the asymptotes are free
parameters, it needs not asymptote at 0 and 1 as the more typical (two
parameter) logistic functions do. Second, the slope Si is divided by the
difference between the asymptotes. Consequently, the slope reflects the
derivative of the function at the midpoint independent of the asymptotes.

The double Gaussian (Eq. (2), Fig. 3) is a better approximation for
looks to competitors. This curve begins with a period of low looks,
followed by an increase in looks culminating at a peak, followed by a
decrease and leveling off.

We use the following parameterization for the double Gaussian
where μ describes the mean for each of the individual normal dis-
tributions; σ12 describes the variance for the left-side normal distribu-
tion (essentially the onset slope); σ22 describes the variance for the
right-side normal distribution (the offset slope); Pi describes the peak,
B1 describes the baseline for the left-side normal distribution, and B2
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Difference of functions
One may also be interested in the amount of “drop-off” between two

curves, as the relevant measure of interest. For example, researchers
often use unrelated fixations as a baseline to control for differential
levels of looking between groups (Fig. 4A). Consequently, the difference
between cohort and unrelated fixations may be a useful estimate of
cohort activity, and differences might further be compared between
groups or conditions (Fig. 4B). BDOTS can handle this by fitting sepa-
rate functions to the components of the difference curves, and then
evaluating the difference curves between conditions.

Additional functions
Although there are only two functions (plus the difference curves)

defined at the moment, it is possible to extend this methodology to any
parametric function (we are currently working on polynomial and five-
parameter logistic functions), and as open source software we en-
courage additional researchers to investigate new functions. The col-
lection of viable functions may be limited, however, by the number of
parameters that define it; a time series with high correlation and
without a very large number of observations will have difficulty fitting
a function with many parameters and results may be unstable.

Curve fitting and overparameterization
As with any non-linear curve fitting procedure one should be con-

cerned about the potential for over-fitting the data. This is mitigated in
a few ways in BDOTs. First, the two presented functions are generally
appropriate fits to VWP data and have been used in many prior studies;
the issue of selecting an overparameterized function that overfits spe-
cific individuals’ responses is largely avoided by sticking to these more
generic functions. Additionally, the amount of data collected in the
VWP is large. Thus, the opportunity for overfitting with 4–6 parameter
functions should be minimal (and reasonable polynomial curve fits
would need even more parameters). Finally, ultimately inference is
performed on the bootstrapped curves and the actual curve fits are
discarded, so the specific function choice has little impact on the end
results unless it is ill-fitting to individual subject curves. In this light, if
functions are overfitting to specific subjects, the idiosyncratic proper-
ties of a given subject’s data (that are likely to trigger overfitting) will

Fig. 2. A typical 4-parameter logistic with B=0, P=1, S=0.002, and
X=1000.

Fig. 3. A typical double Gaussian with B1= 0, B2= 0.05, σ1= 175, σ2= 300,
µ= 1000, and P= 0.20.
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result in much higher variability during the bootstrap portion making
the estimates more conservative.

A worked example
For a worked example, we analyzed data from a study comparing

the timecourse of spoken word recognition in cochlear implant (CI)
users and normal hearing (NH) listeners (Farris-Trimble et al., 2014).
Listeners heard an auditory stimulus in VWP eye-tracking experiment
examining looks to target, cohort, rhyme, and unrelated candidates.
The fundamental comparison here is between-subject: does the amount
of looking to targets or competitors differ between populations of lis-
teners. However, we point out that as implemented, BDOTS can also
evaluate within-subject comparisons (e.g., cohort vs. unrelated).

This original study showed that in addition to differences in fixa-
tions to cohorts and rhymes, CI users also differed slightly from NH
listeners in looking to unrelated objects (perhaps reflecting greater
uncertainty). Thus, here we evaluate competitor fixations as a differ-
ence between cohorts (or rhymes) and unrelated fixations. This asks if
that difference differs significantly between populations. That is, we are
interested in the number of extra looks to the cohort object, above and
beyond the looks to the unrelated (control) object between CI and NH
populations. BDOTS asks specifically at which time points this differ-
ence curve differs.

Step 2: Fitting the functions

Curves are fit using a generalized nonlinear least squares estimation
method, using the gnls function within the nlme R package (Pinheiro,
Bates, DebRoy, Sarkar, & Team, 2015; ver 3.1-122). This finds para-
meter estimates for the function that minimize the sum of the squared
errors (SSE), between the fitted and observed values. It starts from an
initial set of parameters (described shortly). It then continually modifies
these parameters as long as the SSE continues to decrease, until it
reaches an optimal point where the SSE can be decreased no more.

With nonlinear estimation, one needs to provide some sort of naïve
parameter estimates to start the process. While this is also a require-
ment in other common techniques (e.g. GLMs, GEEs, LMEs), in non-
linear approaches, the quality of final estimates can be more contingent
upon decent starting values. It is possible that some starting parameters
will be so far from optimal that the method finds a local minimum with
very different parameter estimates than the global minimum. Thus,
users of BDOTS should to be aware of how these naïve values are de-
termined, as well as ways in which the starting parameters may be

refined if there are issues with fit.
In the BDOTS R package, there are tools for doing this. To estimate

starting parameter for the 4-parameter logistic, we estimate the initial
baseline at the minimum observed value of the data, the plateau at the
maximum observed value of the data. The initial crossover is estimated
as the time-point at which the observed data (proportion of fixations) is
nearest to halfway between the baseline and plateau. The initial slope is
the observed slope between the 25th percentile and 75th percentile.

For the doubleGaussian function we estimate the peak and its lo-
cation (μ) using the maximum observed value and the time point at
which this maximum was observed. Starting baselines are estimated as
the minimum values on each side of the estimated peak location. To
estimate the onset and offset slopes, we compute the total area under
half the curve, from the peak location to a specified time point, and find
the timepoint at which the area was closest to 68.3% (e.g., within one
standard deviation of the mean in a Gaussian distribution).

Once these initial parameters are estimated, curve fitting is con-
ducted. In computing the “error” in the function (for purposes of
minimizing the least squared error), we assume that the variance from
adjacent points are correlated. We use an AR1 correlation structure
which assumes that a time point is correlated to the time point im-
mediately prior, with correlation decaying exponentially as time points
get further apart.

= … + −− −p p F t N ρp ρ| ( , ) ( ,1 )t t t1 1
2

Here pt is the output of either the output of the logistic or double
Gaussian function (defined in F[t, …]) at time t, for a given subject. To
this we add noise coming from a Gaussian distribution N() with a mean
consisting of the autocorrelation, ρ, multiplied by the value at the prior
time point, pt−1, and a variance of 1− ρ2.

There are several important reasons to assume autocorrelated errors
in the curve fitting stage. First, the assumed parametric form is not
expected to perfectly match the raw data, resulting in residuals that are
not independent of each other. Second, this assumption yields smaller
estimated variances for the parameter estimates. This provides more
consistent results in the bootstrapping later, resulting in smaller con-
fidence intervals and more sensitive statistical tests. Third, there are
additional clear theoretical advantages to this assumption (over not
assuming any correlation) as autocorrelated error is a key property of
timeseries data.

BDOTS wraps the curve fitter (gnls) in separate functions that (1)
estimate the appropriate starting parameters; (2) construct the objec-
tive function along with the autocorrelated error; and (3) fit the

Double Gaussians - Differences

Time (msec)

Pr
op

or
tio

n 
of

 F
ix

at
io

ns

Condition A

0 500 1000 1500 2000

0.
00

0.
05

0.
10

0.
15

0.
20

0 500 1000 1500 2000

0.
00

0.
05

0.
10

0.
15

0.
20

Difference Curves

Time (msec)

D
iff

er
en

ce
 in

 P
ro

po
rt

io
n 

of
 F

ix
at

io
ns

Condition A

Condition B

A. B.

Fig. 4. (A) Two double Gaussian curves plotted against each other with the area of the differences highlighted. Each of these two curves is fit in the curve fitting
method. (B) A plot of difference curves. These are the curves that interpretations will be made on when a difference of curves is requested.
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function. One thing to note: parameters are assumed to follow a mul-
tivariate normal distribution with some estimable mean vector and
variance matrix. This is an improvement from Oleson et al. (2017),
where an assumption of independence between parameters was used,
and has the consequence of reducing standard error of the function,
improving power. Below we provide an example of running the fitting
procedure, taken from our R vignette (where the 4th column of the data
set corresponds to the proportion of looks at each time point).

There are several problems that can arise during curve fitting. First,
because it is an optimization procedure, it is possible for the parameter
estimates to reach a local minimum that is different than the global
minimum. The algorithm will converge and one will get parameter
estimates, but it will be clear that the estimates are not very accurate
(we will discuss this in the following paragraph). Second, in some cases,
a given subject’s curve doesn’t conform to the specified function (e.g.,
for target fixations, they may look away from the target toward the end

of the trial, creating a dip in the function prior to the asymptote).
Because one poorly fit subject can greatly impact the overall result of
these tests, it is important to verify and check all fits.

There are several ways to do this. We recommend examining R2

values to evaluate goodness of fits (R2 > 0.95 is generally seen as a
good fit)1 as well as a visual examination of observed data compared to
the estimated curve for each subject. We have built easy to use tools for
both into the R package (illustrated below).

When issues with individual fits arise, there are a few options. The
most immediate option is to specify better starting parameters. This can
be a good solution in cases where the optimization procedure has found
a local minimum – e.g., where the data clearly conforms to the shape of
the function it is just not being estimated properly. The next approach is
to relax the assumption of autocorrelated errors, which eliminates a
free parameter and simplifies the search. This comes with a dis-
advantage: the standard errors around the parameter estimates are

increased (though only for that given fit). This can slightly decrease
power for detecting effects in the bootstrap phase. Finally, alternative
curve fitters (e.g., more constrained algorithms) may achieve better fits.
Estimates from an alternative fitter can be used (without further fitting)
during the refit stage (see help for the two .refit functions). If a good
curve fit is still not achieved after these steps, the subject should likely
be dropped from analysis, or a different analysis used. If a subject’s data
cannot be fit with autocorrelated error, the curve is refit with this as-
sumption dropped.

Example
In the following, taken from our R package’s vignette, we walk

through this procedure.2 A more extensive tutorial can be brought up in
R, with the vignette function.

A summary of the data is shown above. Here, the critical comparison is
on the Group variable and the numeric variable, Curve, stores whether
the data point comes from the Cohort or unrelated curve. The data is
then fit by running:

[R Input]
R > fits < - doubleGauss.fit(ci, col = 4, diffs = TRUE)

Here, the grouping variables include Group, Subject, Time, and Curve.
This latter variable is only used when calculating a difference of curves
for each group, specified by setting diffs= TRUE in the fitting method.
The fitting method will look for these specific column names, con-
ducting fits across Time for each group× subject× curve combination.
LookType is a leftover variable from the dataset that corresponds to the
Curve number. Fixations are designated in the fitting method by speci-
fying their column in the data set (column 4) as the second parameter in
the fitter. This will output:

[R Output]

[R Input]
> vignette(“bdots”)

[R Input]
> data(ci)

> names(ci)[1] < - “Group”

> ci < - subset(ci, ci$LookType == “Cohort” | ci$LookType == “Unrelated”)

> ci$Curve < - ifelse(ci$LookType == “Cohort”, 1, 2)

> summary(ci)

[R Output]

Group

Subject Time Fixations

CI:28056 Min. : 2.00 Min. : 0 Min. :0.000000

NH:26052 1st Qu.: 36.00 1st Qu.: 500 1st Qu.:0.003448

Median : 62.00 Median :1000 Median :0.020725

Mean : 57.91 Mean :1000 Mean :0.043573

3rd Qu.: 82.00 3rd Qu.:1500 3rd Qu.:0.066176

Max. : 106.00 Max. :2000 Max. :0.270677

LookType Curve
Cohort :27054 Min. :1.0

Rhyme : 0 1st Qu.:1.0

Target : 0 Median :1.5

Unrelated:27054 Mean :1.5

3rd Qu.:2.0

1 In general, Pearson’s R (and variants of) are not good estimates of fit for non-linear
functions (since they don’t require an exact match of the function and the data; they just
must be correlated). However in this case, they offer a more useful measure than better
tools like least-squares error or BIC since the scale of R2 is the same regardless of the
number of samples (which affects BIC), and the scale of the Y-axis (which effects RMS
error). Thus, as a quick and dirty way of evaluating fit, R2 has some utility in the fact that
it is scale free and intuitive to most people.

2 Note that we are continually refining the way that functions are called in BDOTs to
make it easier to perform complex analyses. Consequently the specific function calls re-
ferenced here may not work exactly as written in future version. See the vignette and help
files with your version of BDOTs.
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[1] “Group = NH, ID = 1, Subject = 36, Curve = 1, R2 = 0.99”
[1] “Group = NH, ID = 1, Subject = 36, Curve = 2, R2 =

0.996”
[1] “Group = NH, ID = 2, Subject = 38, Curve = 1, R2 =

0.995”
…

[Number of curves fit using AR1 or non-AR1 assumptions as
well as a categorization of the goodness of fit
measure, R2]

########################################
############### FITS ###################
########################################
AR1, R2 > =0.95 103
AR1, 0.95 > R2 > =0.8 5
AR1, 0.8 > R2 0
Non-AR1, R2 > =0.95 0
Non-AR1, 0.95 > R2 > =0.8 0
Non-AR1, 0.8 > R2 0
No Fit – 0
########################################

The output of the function shows a summary of the
number of fits of various sorts. This particular run
was able to find fits for all 108 participants using the
assumption of autocorrelated errors. 103 had R2

greater than 0.95; and 5 had somewhat lower but
acceptable R2 between 0.8 and 0.95. If any datasets
could not be fit with autocorrelated errors they ap-
pear in the Non-AR1 section (or in the No Fit sec-
tion if they could not be fit at all). Note that the
numbers reported here do not necessarily corre-
spond to subjects – in a within subject design, for
example, each condition will be fit separately.

Next, we check the quality of the curve fits.

[R Input – Plot subject curves and histograms of all
parameter estimates – See Figs. 1, 2]

R > subs.plot(fits)
R > ests.plot(fits)

Subs.plot shows each participant’s (or condition’s) data superimposed
on the fitted curve (Fig. 5A). Ests.plot shows histograms of the esti-
mated parameters (Fig. 5B). This can be used to quickly check for
outliers.

After the initial fits, if any subjects showed poor fits, they can be
refit with different starting parameters or without the AR1 errors. In the
initial fitting stage, BDOTS automatically relaxes the AR1 assumption
and refits all curves that were completely unable to be fit using AR1
errors, but does not automatically relax this assumption if the curve fit
succeeded but gave a poor fit. In this case, the data must be refit where
the user must manually relax the AR1 assumption. Other subjects may
simply need to be refit using different starting parameters – these can
often be “eyeballed” from the plot (e.g., the upper and lower asymp-
totes which are easily seen) or by estimating them from other subjects
or conditions.

If any conditions need to be refit (with specified starting values, or
with a different AR1 assumption) that is done next. To do this, first
create a matrix with the starting parameters for all of the subjects that
need to be refit.

[R Input – Set up matrix for refitting method]
> refit.matrix < - matrix(NA, nrow = 2, ncol = 9)
> #ORDER OF COLUMNS sub group curve Mu Peak S1 S2 B1 B2
> refit.matrix[1,] < - c(30, “CI”, 2, 650, 0.15, 150,

100, 0, 0.03)
> refit.matrix[2,] < - c(83, “CI”, 2, 700, 0.10, 150,

100, 0, 0.01)
This holds the starting assumptions for subjects 13 and 23 (both in
condition 2) using new estimated starting parameters (e.g., for subject
13, μ=650, p= 15, σ1= 150, σ2= 100, B1= 0 and B2= .03). The
first three columns are grouping variables and the remaining columns
are initial parameter estimates. It can also be helpful to read this matrix
in from a text file. Next this matrix is sent to the refit function. Here, by
setting cor= TRUE, it is possible to fit the data with assuming AR1
error. Cor can also be set to a matrix indicating this for each subject/
condition.

[R Input – Refit curves while providing new estimated
starting values and relaxing the correlation
assumption]

> fits < - doubleGauss.refit(fits, cor = FALSE,
info.matrix = refit.matrix)

[R Output – Large improvement in R2]
Subject = 30, Group = CI, Curve = 2, Old R2 = 0.844
New R2 = 0.954, Old AR1 = TRUE, New AR1 = FALSE

Subject = 83, Group = CI, Curve = 2, Old R2 = 0.884

Fig. 5. (A) Sample output of subs.plot using data from the present example. (B) Sample output of ests.plot using data from the present example.
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New R2 = 0.954, Old AR1 = TRUE, New AR1 = FALSE

[R Input – Check updated summary of fits]
> printFits(fits)

[R Output]
########################################
############### FITS ###################
########################################
AR1, R2 > =0.95 – 103
AR1, 0.95 > R2 > =0.8 – 3
AR1, 0.8 > R2 – 0
Non-AR1, R2 > =0.95 – 2
Non-AR1, 0.95 > R2 > =0.8 – 0
Non-AR1, 0.8 > R2 – 0
No Fit – 0
########################################

Once good fits have been obtained, bootstrapping begins.

Step 3: Bootstrapping

After step 1, each subject will have estimates of each parameter and
the corresponding variance matrix. During a bootstrap iteration, for
each subject a new, random set of parameters is drawn from a multi-
variate normal distribution. These are used to calculate a new time-
course curve for each bootstrapped subject. Subsequently, group-aver-
aged curves are created by averaging the individual bootstrapped
curves within a group at each time point t. Finally, using all the group-
averaged curves from the bootstrap iterations, an observed mean and
standard deviation are calculated at every t. Note that the observed
bootstrap standard deviation is actually an estimate of the group-
averaged standard error.

In cases where we have a within-subject design there is a slight
modification (in BDOTS users must set the paired variable to TRUE to
signal this design). During the bootstrap iteration, for a specific subject,
the random values are drawn from bivariate normal distributions (e.g.
in the logistic curve, the peak parameter for both curves are drawn
together). We use the parameter estimates from step 1 to calculate
covariance estimates between the two curves (separate covariance es-
timates are created for each parameter).

Step 4: Testing and error correction

Finally, using these estimates of the bootstrapped mean and stan-
dard deviations, we conduct pairwise comparisons at each time to

determine regions of difference in the curves. We start by performing t-
tests at every time point (either between subjects or paired depending if
subjects are matched between groups). A traditional t-statistic is cal-
culated, assuming equal variance between groups, but potentially un-
equal sample sizes. Recall that we only have access to the bootstrapped
SDs (group-specific SEs). Thus, the typical variance estimates in cal-
culating the t-statistic are replaced with the standard error estimates
multiplied by the size of the group.

Once the series of T statistics is obtained at each time point, a time
series model is fit to the series of T statistics using an AR(1) correlation
structure (assumes ∼ −− −T T N ρT ρ| ( ,1 )t t t1 1

2 ). Through this process, an
estimate of the autoregression coefficient, ̂ρ , is obtained which de-
scribes the correlation between adjacent T statistics.

Finally, the probability of a family-wise Type I Error is calculated on
the basis of both an assumed threshold for significance (α), and the
observed autocorrelation, ̂ρ , computed in the previous step. The family-
wise Type I Error is computed using a theoretical distribution which
assumes that there is no true difference between groups, but that ad-
jacent T statistics exhibit the observed level of autocorrelation (for
details of how this is done and a partial mathematical derivation, see
Oleson et al., 2017): This is computed for many values of α∗ until one
provides an overall P(type I error) that is equal to the desired α (typi-
cally .05). This ∗α is then used as the individual α -level in all t-test
calculations. The BDOTS R package will estimate this automatically.

In the following example, we take the output of the curve fitting,
and send them to the bootstrapping function. This automatically per-
forms the bootstrap, computes the series of t-tests, computes their au-
tocorrelation and α∗, and then evaluates their significance. In cases
where subjects are paired across groups, the bootstrap method requires
the paired argument to be set to TRUE.

[R Input – Perform bootstrapping and error correction]
R > bootstraps < - doubleGauss.boot(fits, paired =

FALSE)
[R Output – Significance in the [476, 708] and [804,

1064] regions. α∗ = 0.003 and =̂ρ 0.9992]
$alpha
alpha alpha.adj rho.est
0.0500 0.0030 0.9992

$significant
[,1] [,2]

[1,] 476 708
[2,] 804 1064

It then outputs whatever regions of significance it finds. In this case, it
finds two, between 476 and 708msec and between 804 and 1064msec.
It will also generate a plot which shows the mean estimated timecourse
functions, their bootstrapped confidence intervals, and with significant
regions highlighted. These can be easily formatted using the replot
function (below).

[R Input – Modify graphical parameters in the plot – See
Fig. 6]

R > replot(bootstraps, ylim = c(-0.01, 0.1),
bucket.lim = c(0, 0.08))

Additional BDOTS features

Parallel processing
To speed computation, the curve fitting and bootstrapping steps of

BDOTS have parallel implementations. For the parallel implementa-
tions, the individual fitting of the curves and the individual bootstrap
sample estimates are sent to separate cores which can reduce the
bootstrapping time substantially. These functions have an argument
(cores) which defaults to 1 but can be changed to the appropriate

Fig. 6. The final results of the bootstrapping method with graphical parameters
modified.
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number of cores for the system. A typical recommendation is one less
than the number of physical cores available.

Saving bootstrapped data
There is an option within the package for outputting the boot-

strapped data to a .csv file so that results may be analyzed or plotted in
another program. For each group, this function outputs their estimated
function, the mean of the raw data, and lower/upper confidence in-
terval estimates at each time point, as well as the modified p-value for
significance of group difference. This is implemented through the
method bdots.write.csv.

R > bdots.write.csv(fits,bootstraps, “bdots.txt” =
row.names = FALSE)

Family-wise error correction
The family-wise error correction (assuming auto-correlated test

statistics) can be used with any timeseries of T-statistics, not just those
generated by BDOTs. This is exposed as a function (tsmultcomp), which
takes as arguments the number of tests being performed, the auto-
correlation of the test statistics (which can be computed with ar()), the
degrees of freedom, and the desired alpha. It outputs adjusted α∗.

Reporting

If using this method to analyze data, reported results should include
the given α (the overall alpha assumed by the researcher), the calcu-
lated α∗ (alpha.adj in the output), regions of significance, the estimated
correlation of the T-statistics (rho.est in the output), and the degrees of
freedom used for the T-tests (number of subjects minus 2 for a between
subjects analysis or N− 1 for within subjects). If the estimated corre-
lation of the T-statistics is small, then researchers may want to consider
another analysis or correction method, as BDOTS may be conservative.

Information should be provided about the quality of the individual
curve fits, including the number of subjects removed from each group
due to poor fit, the number of Non-AR(1) fits, the number of AR(1) fits,
as well as the number of curves defined as good fits (R2 > 0.95),
adequate fits (0.95 > R2 > 0.80), and poor fits (R2 < 0.80) in the AR
(1) and non-AR(1) categories (available via print.fits()). Subjects re-
moved from the analysis should have a short description as to the
reason they were removed (e.g. their curve did not follow the general
trend of the population or their curve could not be adequately fit).
Additionally, a measure of the change in the group level eye-tracking
curve should be reported (as well as a figure of the pre- and post-de-
letion curves if possible). Next, the function used for curve fitting (lo-
gistic vs. double Gaussian) and subject setup (between subject vs within
subject) should be reported. Finally, regions of significance and the
direction of the effect should be reported. The average fixations within
these windows can be reported as descriptive statistics.

An example results section should look like the following: 40 sub-
jects were fit using the double Gaussian function in a between-subject
study design where each group was a single condition (difference of
conditions). In the fitting stage, 37 curves had good fits with AR1
(R2>=.95), 1 curve had good fits without AR1, 1 curves had rea-
sonable fits with AR1 (R2>=.8), and 1 subject (from the CI group)
was dropped due to poor fitting in at least one of their curves. The
average absolute change in the CI group curve by dropping the poor
fitting subject was 0.001. In the bootstrapping stage, autocorrelation of
the t-statistics was 0.998, the adjusted alpha was calculated to be 0.004.
We found regions of significance at [350, 600] and [1000, 2000]. In
both cases, the CI group exceeded the NH group (region 1: differ-
ence= .03; region 2: difference= .023).

Discussion

This paper introduced a new technique for analyzing differences

among two population curves for timeseries data with high levels of
autocorrelation. We focused on eye-tracking in the visual world para-
digm as our prime example but the technique may be broadly useful in
other domains as well (particularly as new functions are added to the
package). BDOTS is not a complete solution, but it does offer some
unique insight into timeseries data and a platform for further statistical
development. Here we discuss it relative to existing approaches, before
mentioning one additional caveat.

Comparison to other approaches

Prior approaches for analyzing such data would aggregate the fixation
data over a specific timewindow (AUC analyses) and use these aggregates in
more traditional analyses. In the best-case scenario, where this window is
chosen before data collection begins, interpretation still suffers because the
AUC is averaged across a window rather than at specific time points. The
worst-case scenarios would be situations in which this window is chosen by
looking at the data for areas of interest or, even worse, by testing different
potential windows and choosing the one with the largest effect. These
would clearly inflate Type I error. Our method allows for interpretation at
each individual time point in addition to avoiding any need for choosing
this arbitrary window to aggregate over. Additionally, we are able to pro-
vide confidence intervals and p-values corresponding to group differences at
each time point.

Another approach has been to incorporate polynomial terms into a
mixed effects model analysis. While this offers good fits to the data,
interpretation of the differences are essentially reduced to stating that
there exists some difference between the groups and little more. Our
method allows for specification of a function of the user’s choice (and
polynomial functions will be an option in the near future) but this
choice only affects the quality of curve fits and is mostly discarded later
on when values are bootstrapped, so it is less dependent on the specific
form of the function. Moreover, when using a mixed effects model to
analyze this data, the use of group as a variable indicates that it will
have a constant effect on the mean of the function (unless additional
group× time and group× time2 [etc] interaction terms are added).
However, with our approach the size of the group difference can vary
with time as the goal is not to model the effect of group as part of the
function, but rather to use the functions to estimate its effect.

While our method does allow the relaxation of the assumption of a
constant group effect, it does not allow for inclusion of covariates other
than group. In principle this can be done by incorporating more com-
plex test statistics at each point in time. However, in practice this may
be difficult as separate good fits will need to be obtained for different
subsets of the data, and this may be difficult as these subsets may be too
small to obtain good fits.

It is also important to point out that BDOTs uses a true strong fa-
mily-wise error correction. It neither admits some possibility of false-
discovery (as an FDR based solution would) nor does it simply collapse
nearby comparisons to avoid the issue as cluster-based permutation
approaches do. As we have demonstrated (Oleson et al., 2017) this
leads to robust power, while maintaining family-wise alpha. Moreover,
while there are a number of researcher driven choices (e.g., the choice
of the function), inferences are not made on the direct basis of these
choices. As a result, in most cases, the consequences of overfitting the
data are minimal (if anything, a poorly chosen function will yield less
power). Consequently, BDOTs may be more robust to researcher d.f.
than other approaches.

Finally, while BDOTS can detect an onset effect by looking for the
first significant difference along the timecourse, we are unable to pro-
vide a confidence interval or test to compare onsets of two separate
curves in the current framework. That is, BDOTS focuses on compar-
isons along the Y axis (degree of looking) not comparisons on the X axis
(time). This may be possible by adapting existing techniques
(McMurray, Clayards, et al., 2008) in the BDOTS framework. For ex-
ample, once functions are estimated, one could estimate the time at
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which they cross a fixed threshold. The variance of this new time-es-
timate could then be estimated at the bootstrap step in order to com-
pare the onset of two effects.

Dangers of overfitting

As always, with nonlinear fitters, it is important to be cautious about
overfitting the available data. The largest danger lies within the selec-
tion of a non-parametric function after looking at the data, as a function
can specifically be chosen that represents the observed curve well but
may not a good fit to the true underlying trend. To combat this, it is
important to make decisions about the parametric form of the function
used for fitting (e.g. 4-parameter logistic or double Gaussian) prior to
viewing of the data and to constrain choices by the general properties of
the measure, and the history of work with this measure. Because the
functions included in BDOTS (the 4-parameter logistic and double
Gaussian) have relatively few parameters for the amount of data and
are specified based on a history of timecourse curves in the VWP, the
likelihood of overfitting based on over parameterization is small.
However, if the amount of data were reduced by decreasing the period
of time over which responses are observed or sampling less frequently,
overfitting could result in overly optimistic fits and inflated Type I
Error. It is important to justify future function implementations a priori,
and not based on observed timecourse curves from a current study, or
run the risk of overfitting.

Item effects

An ongoing issue in psycholinguistics is accounting for variance due
to items (words/sentences) as well as more traditional variation due to
subjects. This was traditionally solved by separate item and subject
analyses (F1/F2 analyses: Clark, 1973), and more recently by mixed
models that account for both simultaneously (Baayen et al., 2008).
BDOTS does not yet have the ability to capture crossed random effects,
and ongoing work should build on the tools presented here to develop
such models. In the meantime, BDOTS can be used with separate item
and subject analyses and an F1/F2 style approach to combining these
analyses. This is not a perfect alternative to the incorporation of item
effects, but is better than interpretations based on subject analyses
alone.

Other caveats and future directions

While fixation curves generally fit quite well for typical participants
(when sufficient repetitions are available), in some cases looking may
not follow the same pattern between participants (e.g., see individual
curves plotted in Yee, Blumstein, & Sedivy, 2008). One approach that
could be explored is to use different functions to fit curves for each
individual. The bootstrap does not care that all participants use the
same function as long as it can generate the estimated fixations and
their variance for that subjects. For some populations this may work
well statistically. However, this raises concern as to what is truly being
analyzed when different subjects exhibit functions of qualitatively dif-
ferent forms. Of course, the ultimate solution for poor fits is to remove
them from the procedure. However, care must be taken to not sys-
tematically modify the overall group estimate by excluding a common
group of subjects. And of course, with special populations this may not
always be advisable. Such concerns may be mitigated by summarizing
the change in group averages when subjects are dropped.

Finally, having T as the only choice for a sample statistic is limiting.
Implementation of the Pearson correlation, R, should be straightfor-
ward as the distribution assumptions are similar to those of T.
Ultimately, F would be of particular interest (detecting a difference
between at least two groups within a larger collection of groups) but
would require more theoretical work.

Conclusion

BDOTS provides a computationally efficient package for analyzing
highly correlated temporal data in such a way that the true family-wise
error rate can be maintained. BDOTS is able to take advantage of the
functional definitions of the 4-parameter logistic and double Gaussian
for eye-tracking data, but is general enough where additional functions
could be defined for other types of timeseries data, and would provide
the same benefits from being able to describe the curve in a parametric
form. More importantly, in contrast to previous approaches BDOTS
allows inference of group differences without assuming a particular
time window, can identify the window of interest, and avoids the
computationally expensive task of calculating permutation tests.
Because the timewindow is no longer up to the researcher, it eliminates
one opportunity for p-hacking.
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