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Abstract
Zoonotic visceral leishmaniasis (ZVL) is a serious neglected tropical disease that is

endemic in 98 countries. ZVL is primarily transmitted via a sand fly vector. In the

United States, it is enzootic in some canine populations; it is transmitted from infec-

tious mother to pup transplacentally, and vector-borne transmission is absent. This

absence affords a unique opportunity to study (1) vertical transmission dynamics in

dogs and (2) the importance of vertical transmission in maintaining an infectious

reservoir in the presence of a vector. In this paper, we present Bayesian compart-

mental models and reproductive number formulations to examine (1) and (2), provid-

ing a mechanism to plan and evaluate interventions in regions where both transmis-

sion modes are present. First, we propose an individual-level susceptible, infectious,

removed (SIR) model to study the effect of maternal infection status during pregnancy

on pup infection progression. We provide evidence that pups born to diagnostically

positive mothers during pregnancy are more likely to become diagnostically positive

both earlier in life, and at some point during their lifetime, than those born to diagnos-

tically negative mothers. Second, we propose a population-level SIR model to study

the impact of a vertically maintained reservoir on propagating infection in a naive

canine population through emergent vector transmission using simulation studies. We

also present reproductive numbers to quantify contributions of vertically infected and

vector-infected dogs to maintaining infection in the population. We show that a verti-

cally maintained canine reservoir can propagate infection in a theoretical naive pop-

ulation in the presence of a vector.
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1 INTRODUCTION

Zoonotic visceral leishmaniasis (ZVL) is a neglected tropi-

cal disease that places approximately 350 million people and

millions of dogs at risk globally (Desjeux, 2004; Alvar et al.,
2012; Toepp et al., 2017). ZVL is characterized in part by

an asymptomatic period, where individuals are not clinically

ill, but can still transmit infection (Fakhar et al., 2008; Lau-

renti et al., 2013). It also has multiple transmission modes. In

the Americas, ZVL is caused by the protozoan parasite Leish-
mania infantum (L. infantum). In endemic areas it is trans-

mitted primarily by an infected female Lutzomyia longipalpis
sand fly bite (Desjeux, 2004). A second mode of transmis-

sion is vertical; this is the primary transmission route in dogs
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F I G U R E 1 Schematic for the two proposed SIR models. The vertically derived infection progression process is at the individual level and is

represented by diamonds (∗= susceptible, ∗ = infected, ∗ = removed). In the presence of an emergent vector (circles, 𝑆𝐹=susceptible,

𝑆𝐹=infected), the vector initially will become infected by biting a vertically infected individual (𝑖 ∈ ∗) and can then pass on infection to naive

dogs (in ), represented by squares. Once || > 0, uninfected vectors can derive infection from either vertically infected or vector-infected

individuals (dashed lines) and to different infection states ( = infected,  = removed) according to a population-level model (solid lines). This

figure appears in color in the electronic version of this article, and any mention of color refers to that version

in nonendemic areas—infectious dams can pass infection to

their pups transplacentally (da Silva et al., 2009).

In the United States, ZVL is enzootic in some hound popu-

lations. Infection is maintained through vertical transmission;

vector transmission is absent (Schantz et al., 2005; Duprey

et al., 2006; Petersen and Barr, 2009). In 1999, canine leish-

maniasis broke out in a New York dog kennel. The Centers

for Disease Control and Prevention, Division of Parasitic Dis-

eases, began widespread surveillance of dog kennels in 2000

(Petersen and Barr, 2009). Surveillance efforts are ongoing

among participating kennels. The lack of vector transmission

in the United States allows us to study vertical transmission

dynamics only, versus the combination of vertical and vector

transmission. This can help kennel owners decide on breed-

ing practices and treatments. Through population-level sim-

ulations, we can gain insight into the potential impact of a

vertically maintained canine reservoir in endemic countries

like Brazil, where control measures do not fully address the

secondary transmission mode (Claborn, 2010).

In this paper, previous models for vertical and vector

transmission are discussed in Section 1.1. In Section 2, a

novel individual-level Bayesian compartmental model to

study vertical transmission in isolation is proposed in the

form of a susceptible, infectious, removed (SIR) model

(diamonds, Figure 1). In Section 3, a population-level SIR

model to study the potential impact of vector transmission

in a vertically maintained reservoir on a naive population

is presented (Figure 1). In Section 4, reproductive numbers

for both models are proposed. We introduce the Infection

Source-specific Empirically Adjusted Reproductive Number

(ISEARN) to quantify vertical and vector infected group

contributions to maintaining population infection. Results

and discussion are presented in Sections 5 and 6, respectively.

1.1 Epidemic compartmental models

Considerable work has been done in both deterministic and

stochastic epidemic compartmental modeling, primarily for

horizontal transmission (eg, Kermack and McKendrick, 1927;

Lekone and Finkenstädt, 2006). Some of this work has

focused specifically on vector-transmitted infections, where

a compartmental model for the vector species is included

(Samat and Percy, 2012; Mukhtar et al., 2018). This approach

depends on estimating the total number of infective individu-

als in the vector species. Many diseases also can be transmit-

ted vertically, including rubella, Chagas’ disease, and AIDS

(Busenberg and Cooke, 1993). Relatively few models address

vertical transmission, since it is often considered less impor-

tant. When it is included, the vertical mode is incorporated
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into population-level models (with horizontal transmission)

through a birth process (Anderson and May, 1979; Li et al.,
2001; Zou et al., 2017). Models for vertical transmission alone

have not been introduced, since this mode usually accompa-

nies horizontal transmission. However, vertical is the only

known transmission mode for ZVL in the United States, so

this demands a new modeling approach.

To this end, we propose an individual-level compartmental

model to study purely vertical transmission dynamics. This

allows us to leverage a known contact process and incor-

porate individual covariates into the model while using a

framework that is compatible with population-level epidemic

compartmental models. We also incorporate the vertical

and vector-infected host contributions and vector species

into the familiar population-level SIR framework through a

transition probability.

1.2 Reproductive numbers

A reproductive number (RN) is an important quantity in epi-

demiology. In its simplest form, the basic reproductive num-

ber (BRN) is the total number of secondary cases produced

by a primary case in a completely susceptible population

(Dietz, 1993). While this quantity is most naturally explored

in the context of horizontally transmitted infections, it is also

meaningful for vertical transmission. We view each litter as

completely susceptible and contacting one infectious individ-

ual, the mother. Then, the BRN is the expected number of

pups that ever progress to infection per infectious mother.

We calculate BRNs for both diagnostically negative and pos-

itive mothers to assess the impact of mother’s status on pup

health.

This definition is limiting in two important ways, so it

is problematic for application to ZVL vector transmission.

First, it requires a completely susceptible population, which

is seldomly realistic and is inappropriate for established infec-

tions in a population. Second, it remains constant across time,

which is too restrictive. For example, if there is infection sea-

sonality, or if an intervention is introduced, a constant RN

cannot capture these changes; it would have to be recalculated

under a number of specific conditions. Researchers have intro-

duced more general RNs to address these drawbacks, includ-

ing temporally varying and scaled versions, called effective

reproductive numbers (Chowell et al., 2004; Lekone and

Finkenstädt, 2006).

Brown et al. (2016) introduced a more flexible quantity, the

“empirically adjusted reproductive number,” which requires

only the expected number of secondary infections produced

by a single infected individual in the population of interest to

define a RN. While this has a natural representation for the

stochastic SIR model employed here, in its current formula-

tion, it accommodates a model with a single infectious class.

In our application, there are two different infectious sources:

vertically (𝐼∗), and vector-infected individuals (𝐼). Under the

assumption that these transmission modes are disjoint (dogs

can be infected through one mode, but not both), we extend

the empirically adjusted reproductive number to derive the

ISEARN. This is an additive quantity applicable to diseases

with multiple hosts that quantifies each infection source con-

tribution to maintaining disease.

2 INDIVIDUAL SIR MODEL:
VERTICAL TRANSMISSION

2.1 Data and classification

Data were collected from 2005-2018 by the Centers for Dis-

ease Control and the Petersen Lab at the University of Iowa

through an ongoing surveillance study of hunting hound pop-

ulations predominantly located in the midwestern United

States. Although vertical transmission of L. infantum has

been observed in multiple breeds (Gaskin et al., 2002; Rosy-

pal et al., 2005), we restrict our analyses to Foxhounds

because the infection process can vary by breed (Moreno and

Alvar, 2002). The data set has 70 individual pups, each with

individual-level data including birth year, and results of at

least one of three diagnostic tests for at least two time points:

immunofluorescence anti-Leishmania antibody test (IFAT),

quantitative polymerase-chain reaction (qPCR), and Dual-

Path Platform (DPP®) canine visceral leishmaniasis (CVL).

We also have at least one of these test results for the mother

of each pup for the pup’s birth year. All dogs included in this

data set were born to mothers that became positive on at least

one test at some point in their lives, so all pups were exposed

to L. infantum in utero. An exploratory analysis is available in

the Web Appendix.

For each pup, mother’s status during pregnancy and pup’s

status at each time are classified as (susceptible) or  (infec-

tious) based on the results of up to three tests: IFAT, qPCR,

and DPP® CVL. For IFAT, dilutions at or above 1∕64 are pos-

itive. The qPCR test gives a positive/negative result based on

a standard curve and a cutoff of 41. For DPP® CVL, if the

test was positive within 15 minutes, it was positive. A dog is

classified into  if it has all negative test results. While we use

“susceptible” to be consistent with infectious disease model-

ing terminology, dogs in  are exposed, but have parasite lev-

els below the limits of detection for the tests. If at least one

test is positive, we classify a dog into , as these tests corre-

late well with infection, based on parasite culture and physical

exams (Larson et al., 2017). We refer to this as “diagnostically

positive.” Dogs are classified as removed () upon death or

other removal from the population. Of the 70 dogs, 22 were

born to  and 48 were born to  mothers. Dogs are assumed

to progress as shown in Figure 1, left column.
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2.2 Likelihood and priors

We employ a multinomial model (Ozanne et al., 2019). Let

𝑍𝑐
𝑖𝑗

denote the infection state of the 𝑖th dog at time 𝑗 for 𝑖 =
1,… , 𝑁 , 𝑗 = 1,… , 𝑇 , and 𝑐 ∈ { ,,}. The time index, 𝑗,

is 𝑗th year since surveillance began. The transition probabili-

ties are inverse logit functions of age and maternal status dur-

ing pregnancy (see Web Appendix). The likelihood is

(
𝑍

𝑖,𝑗+1, 𝑍


𝑖,𝑗+1, 𝑍


𝑖,𝑗+1
)|𝑍

𝑖𝑗
∼ Multinomial

(
1,𝝓(⋅)

𝑖𝑗

)
; (1)

𝑍

𝑖,𝑗+1
|||𝑍

𝑖𝑗
∼ Bernoulli

(
𝝓
()
𝑖𝑗

)
. (2)

Dogs are usually members of a litter, so transition prob-

abilities for this application could incorporate a random lit-

ter term. However, we are modeling infection progression

in purebred Foxhounds from a few hunts that interbreed—

a fairly homogeneous group. Conditional on mother’s status

during pregnancy and pup age, pups can be considered inde-

pendent. We placed𝑁(0, 1) priors on 𝜷, 𝜽, and 𝝃; more diffuse

priors gave comparable estimates.

2.3 Model fitting and validation

The individual-level SIR model for vertical transmission

was fit using Markov chain Monte Carlo (MCMC). Updates

were performed using the Metropolis-within-Gibbs algo-

rithm. Relevant distributions, the algorithm, and R code are

available in the web appendices. Model fit was assessed

by comparing the observed counts in each compartment

( , , ) at each age (0-10) to the posterior predictive

counts using a posterior predictive p-value (Gelman et al.,
1996). For the observed data, 𝐘obs, and for each posterior

predictive data set, 𝐘(𝓁) (𝓁 = 1,… , 𝑛), the test statis-

tic 𝑋2(𝐘) = ∑
𝑐∈{ ,,}

∑𝑇max

𝑗=0
[𝑌𝑗𝑐−E(𝐘∗

𝑗𝑐
)]2

Var(𝐘∗
𝑗𝑐
)) was calculated.

E(𝐘∗
𝑗𝑐
) and Var(𝐘∗

𝑗𝑐
) denote the posterior predictive mean and

variance, respectively, and 𝑇max is the maximum observed

age. Then, the posterior predictive p-value is 𝑃 [𝑋2(𝐘(𝓁)) >

𝑋2(𝐘obs)|𝐘obs] ≈
∑𝑛

𝓁=1 1{𝑋2(𝐘(𝓁))>𝑋2(a𝐘obs)}∕𝑛. For 𝑇max

between two and five, the posterior predictive p-value was

greater than 0.3. It was 0.416 for a 𝑇max of 4, which corre-

sponds to the average observed death age. Where data were

more sparse, lower predictive p-values were observed. For

example, after age 5, more than half of the observations were

missing (see Web Appendix) and the available data mainly

were a result of the removed category being an absorbing

state, that is dogs removed at or before age 5 remain in that

category and do not inform any compartment transitions.

Nevertheless, where the model is constrained by observation

of nonabsorbing states, the fit was adequate.

3 POPULATION SIR MODEL:
VECTOR TRANSMISSION

While vertical transmission of L. infantum exists in endemic

areas like Brazil (da Silva et al., 2009), we cannot study this

transmission mode directly because vertically infected and

vector-infected dogs are indistinguishable. Since vertical is

the only known transmission mode in canines in the United

States (Schantz et al., 2005; Duprey et al., 2006; Weng et al.,
2012; Schaut et al., 2015), we have a unique opportunity to

study not only the individual-level dynamics of the infection

but also the potential implications for infection spread in the

larger (naive) canine population, should vector transmission

emerge in the United States. The vertically maintained reser-

voir is the initial infection source for the vector (Figure 1).

Naive dogs can acquire infection from the vector and become

a second infectious source.

To study the impact of an existing, vertically infected

canine population, ∗, on infection spread in a naive canine

population,  (Note: ∗ +  = all, all dogs in a particular

area), we propose a population-level SIR model. In simula-

tion studies, we examine the ISEARNs for various choices

of infection rate, 𝜆, and population size (||). Although we

examine L. infantum transmission dynamics on an individ-

ual level for vertical transmission, it is important to study the

vector transmission on a population level because this best

reflects the data available in endemic countries like Brazil,

where extensive information is rarely available for individual

dogs. We can track vertical and vector-derived infections in

these simulations, so vertically exposed dogs (∗) progress

according to the individual-level model.

3.1 Sand fly data

As part of an effort to understand sand fly feeding behaviors,

sand flies were fed on sedated dogs with varying ZVL clini-

cal status. Standard procedures were used to identify infected

flies; 192 of 292 fed flies were infected (see Web Appendix

for procedure details).

3.2 Data model

As described in Section 3.1, we have data on the proportions

of female Lutzomyia longipalpis sand flies that became

infected when fed on vertically infected dogs in the United

States. We assume any vector would become infected at

similar rates to Lutzomyia longipalpis used in experiments,

and all flies are equally likely to become infected after biting

infectious dogs.

Let 𝑍
(SF)
𝐼

denote the number of sand flies that were found

to be infected when they were fed on diagnostically positive
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dogs. While vertically exposed diagnostically negative moth-

ers can transmit infection to their offspring, parasite load is too

low to transmit through a vector (Vida et al., 2016). The model

is 𝑍
(SF)
𝐼

∼ Binomial (𝑁 (SF), 𝜌𝐼 ); 𝑁 (SF) = 292 and 𝜌𝐼 = 0.65.

3.3 Process model

We are interested in how new vector transmission in a verti-

cally exposed population may impact naive dogs. In the pres-

ence of vector transmission, we propose the following pro-

cess model, with a chain binomial structure. This could be

expressed using a multinomial likelihood, but the chain bino-

mial structure is more commonly used for population-level

epidemic compartmental models (Lefévre, 1990; Lekone

and Finkenstädt, 2006; Brown et al., 2016). For the 𝑘th

month since vector emergence, 𝑘 ∈ 1,… , 24 with 𝜋()(𝑡𝑘) +
𝜋()(𝑡𝑘) < 1,

𝐼 ()(𝑡𝑘) ∼ Binomial
(
𝑆(𝑡𝑘−1), 𝜋()(𝑡𝑘)

)
, (3)

𝑅()(𝑡𝑘) ∼ Binomial
(
𝑆(𝑡𝑘−1) − 𝐼 ()(𝑡𝑘), 𝜋()(𝑡𝑘)

)
, (4)

𝑅()(𝑡𝑘) ∼ Binomial
(
𝐼(𝑡𝑘−1), 𝜋()(𝑡𝑘)

)
. (5)

At time 𝑘 + 1, the compartment totals for dogs in  are deter-

ministic functions of those totals at time 𝑘 and the transi-

tion compartments at time 𝑘 + 1. For dogs in , the proba-

bility of transitioning from  →  at time 𝑘 depends on the

proportions of infectious dogs and the probability that sand

flies become infectious from feeding on infectious individu-

als. The counts at time 𝑘 are 𝑆∗(𝑡𝑘) =
∑𝑁∗

𝑘

𝑖=1𝑍


𝑖𝑗(𝑘), 𝐼
∗(𝑡𝑘) =∑𝑁∗

𝑘

𝑖=1𝑍


𝑖𝑗(𝑘), and 𝑁∗(𝑡𝑘) = 𝑆∗(𝑡𝑘) + 𝐼∗(𝑡𝑘).

3.4 Parameter model

We assume a homogeneous Poisson contact process. Dogs

are bitten at rate 𝜆𝑘 for month 𝑘. If a dog in  is bitten by

an infected sand fly, it will become infected with probability

𝑝. The proportion of infectious sand flies in the population

should depend on the proportions of vertically and vector-

infected dogs at time 𝑘 and the probability that an uninfected

sand fly becomes infectious after contact with an infected dog.

Assuming no biting preference, 𝛿𝑘 = 𝜌𝐼 (
𝐼(𝑡𝑘−1)

𝑁(𝑡𝑘−1)+𝑁∗(𝑡𝑘−1)
) +

𝜌𝐼 (
𝐼∗(𝑡𝑘−1)

𝑁(𝑡𝑘−1)+𝑁∗(𝑡𝑘−1)
) = 𝛿𝐼

𝑘
+ 𝛿𝐼

∗

𝑘
. This term captures both the

vector and vertical transmission contributions, where the lat-

ter (𝐼∗(𝑡𝑘−1), is calculated using the individual-level vertical

transmission model from Section 3.

Lutzomyia longipalpis sand flies typically live 10 days

or less (Dia-Albiter et al., 2011). We assume a vector in

the United States would have a similar lifespan and account

for flies that are infectious at the beginning of a month

and those that are not, but can become infectious dur-

ing that month and then bite a susceptible dog. The  →
 transition probability is a first-order Markov process:

𝜋()(𝑡𝑘) = 1 − 𝑒−{𝛿𝑘−1𝐼(𝑘>0)+(1−𝛿𝑘−1)𝐼(𝑘>0)𝛿𝑘}{𝜆𝑘𝑝}. For 𝑘 > 0,

𝛿𝑘 is the proportion of infectious sand flies; (1 − 𝛿𝑘)𝛿𝑘
denotes the probability that noninfectious sand flies become

infectious. At 𝑘 = 0, no flies are infectious. We decom-

pose 𝜋()(𝑡𝑘) to obtain transition probabilities from  → 

due to vector transmission, where the vector derives infec-

tion from two distinct sources: , and ∗, and associated

RNs. The probability of an  →  transition due to expo-

sure from a vector source (), for example, is 𝜋()(𝑡, 𝑠𝐼 ) =
𝜋𝐼|!𝐼∗ (𝑡)[1 − 𝑃 (𝐴(𝑡, 𝑠𝐼∗ ))]. 𝑃 (𝐴(𝑡, 𝑠𝐼∗ )) is the probability of

getting infected at time 𝑡 due to a vertically infected sand

fly bite; 𝜋()(𝑡𝑘, 𝑠𝐼 ) = 1 − 𝑒
−{𝛿𝐼

𝑘−1𝐼(𝑘>0)+(1−𝛿𝐼
𝑘−1)

𝐼(𝑘>0)𝛿𝐼
𝑘
}{𝜆𝑘𝑝}

(see Web Appendix for derivations). Other probabili-

ties are 𝜋()(𝑡𝑘) ∼ Beta (𝛼(), 𝛽()) and 𝜋()(𝑡𝑘) ∼
Beta (𝛼(), 𝛽()), assumed constant over time.

3.5 Simulation studies

These simulations serve two purposes. First, we demonstrate

a potential modeling approach for areas with both vertical and

horizontal transmission. Developing methodology which can

be applied in regions with both transmission modes is nec-

essary to comprehensively plan and evaluate public health

interventions. Programs which target vector transmission, and

those which target vertical transmission operate differently,

and may need to be coordinated or combined (Miró et al.,
2018). Moreover, common reservoir control methods (eg,

culling) which disregard the details of vertical transmission

may prove ineffective in controlling the maintenance of the

infectious organism in the population. Second, we can assess

how a vertically maintained canine reservoir could infect a

naive canine population in the presence of emergent vector

transmission. Specifically, we look at what could happen if a

vector emerged at the last time point we consider in the verti-

cal transmission model (2018 in this case) and assume we can

observe this process from emergence. We examine the infec-

tion behavior with different combinations of (𝑝 ⋅ 𝜆,𝑁); we

consider all combinations of 𝑝 = 0.01, 𝜆 from 10 to 200 (aver-

age bites per month), 𝑁 = {50, 100, 500}. Note that 𝜆 and 𝑝

are unidentifiable, so we fix 𝑝 for the simulations and vary

𝜆. We assume that 𝔼(𝜋()) = 0.0005, 𝛽() = 1, 𝔼(𝜋()) =
0.2, and 𝛽() = 1. We sample with replacement 1000 times

the posterior parameter estimates from fitting the vertical

transmission compartmental model to the ZVL surveillance

data. Then, we use posterior estimates to propagate the ver-

tically exposed canine population forward for 24 months and

count the number of vertically infected dogs at each month 𝑘.

Simultaneously, we simulate vector infection data according
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to the population model described in Section 3 for all combi-

nations of (𝑝 ⋅ 𝜆,𝑁).

4 REPRODUCTIVE NUMBERS:
TWO TRANSMISSION MODES

A RN is the most common method for quantifying infec-

tion transmissibility in a population (Anderson and May,

1991). In this section, we provide RN formulations for verti-

cal and vector transmission as a result of vertically and vector-

maintained reservoirs.

4.1 Basic reproductive numbers
for vertical transmission

When infection is transmitted transplacentally, an infectious

female dog only passes infection to her pups, so the number

of potentially infectious contacts is the number of pups in a lit-

ter. To calculate a BRN for vertical transmission from  moth-

ers, for instance, we determine the expected number of pups

(born to  mothers) that become infected sometime in their

lives.

We simulate realizations of vertically exposed pups to

estimate reproductive numbers as follows. We sample with

replacement 1000 times the posterior parameter estimates

from fitting the vertical transmission SIR model to the ZVL

data. For each 𝓁 ∈ {1, 2,… , 1000}, we consider 𝑁∗ = 70
pups, starting at age 0, and distribute these pups between 

mothers and  mothers according to a Binomial(𝑁∗, 1∕2)
distribution. We assume there are an equal number of 

and  mothers (seven each). Using the posterior parame-

ter estimates (𝛽, 𝜃, 𝜉)𝓁 , we propagate the pups forward and

count the number that ever enter the  category. Formally,

let 𝑍
|
𝑖𝑗

be 1 if individual 𝑖 becomes newly seropositive ()

at time 𝑗 and 0 otherwise. Let 𝑍𝑀
𝑖
(𝑚) be 1 if individual 𝑖’s

mother was in infection category 𝑚 at the time of 𝑖’s birth

and 0 otherwise. Then, an empirical estimate of the BRN

for mothers in 𝑚 ∈  = {𝑆∗, 𝐼∗} is 𝑚
0 =

∑𝐽
𝑗=1

∑
𝑖∈𝑁∗

𝑚
𝑍

|
𝑖𝑗

𝑀(𝑚) .

If 𝑚
0 > 1, infection will persist in the population due to

source 𝑚.

4.2 ISEARNs for vector transmission

Let 𝐼𝑖(𝑡𝑘, 𝑠𝑏) be the event that individual 𝑖 becomes infected

after being bitten by a sand fly that derived its infection

from an individual in 𝑏 ∈  = {𝐼, 𝐼∗}. Then, the expected

number of secondary infections attributable to an individ-

ual in 𝑏 is 𝔼[
∑𝑁𝑘

𝑖=0(𝐼𝑖(𝑡𝑘, 𝑠𝑏))] = 𝑆(𝑡𝑘) ⋅ 𝑃 (𝐼𝑖(𝑡𝑘, 𝑠𝑏)|𝑖 ∈ ) =
𝑆(𝑡𝑘) ⋅ 𝜋()(𝑡𝑘, 𝑠𝑏). Furthermore, the average number of

infections per infectious individual in 𝑏 is the next-generation

term (Allen and van den Driessche, 2008) 𝐺(𝑡𝑘, 𝑠𝑏) =
𝑆(𝑡𝑘)⋅𝑃 (𝐼𝑖(𝑡𝑘,𝑠𝑏)|𝑖∈)

𝑏(𝑡𝑘)
. The next-generation matrix is

𝐆(𝑡𝑘) =



∗

 ∗

||||||||
𝜋()(𝑡𝑘, 𝑠𝐼 )𝑆(𝑡𝑘)

𝐼(𝑡𝑘)
𝜋()(𝑡𝑘, 𝑠𝐼∗ )𝑆(𝑡𝑘)

𝐼∗(𝑡𝑘)
0 0

||||||||
If 𝑏(𝑡𝑘) is 0, 𝐺(𝑡𝑘, 𝑠𝑏) is defined to be 0. We account for the

probability that an individual remains in an infectious state at

each time, 𝑡, and calculate the total number of expected infec-

tions over time to generalize the result to the pathogen’s life-

time. This gives the ISEARN,


()(𝑡𝑘, 𝑠𝑏) =

𝑡∞∑
𝑡=𝑡𝑘

𝐺(𝑡, 𝑠𝑏)
(

𝑏(𝑡)∑
𝑏∈ 𝑏(𝑡)

)
(1 − 𝜋())𝑡𝑘 .

(6)

Equation (6) allows us to calculate the expected number

of (vector-transmitted) infections attributable to a single type

of infectious individual, lending insight into an infectious

group’s relevance to maintaining infection in a population.

For example, ()(𝑡𝑘, 𝑠𝐼∗ ) is the expected number of new

vector-borne infections per vertically infected dog at time 𝑘.

We can interpret ISEARNs like other RNs. If ()(𝑡𝑘, 𝑠𝑏) is

greater than one, then the parasite is expected to further colo-

nize the population due to vector transmission from infectious

source 𝑏 ∈ .

If()(𝑡𝑘, 𝑠𝑏) < 1 ∀𝑏, no one source results in further par-

asite colonization, but together multiple sources may. We can

calculate an overall RN to capture the total expected number

of new infections due to vector exposure from all sources. To

derive the  →  transition probability, we assume that the

set of events {𝐼(𝑡, 𝑠𝑏)} are mutually disjoint. Consequently,∑
𝑏∈ 𝜋

()(𝑡, 𝑠𝑏) = 𝜋()(𝑡) (see the Web Appendix). Then,


()
add

(𝑡𝑘) =
∑

𝑏∈
∑𝑡∞

𝑡=𝑡𝑘
𝐺(𝑡, 𝑠𝑏)(

𝑏(𝑡)∑
𝑏∈ 𝑏(𝑡) )(1 − 𝜋())𝑡𝑘 .

This is consistent with Brown et al. (2016)—empirically

adjusted reproductive numbers are additive across spatial

locations. If 
()
add

is greater than one, infection will grow in

the population due to vector transmission.

5 INFERENCE

5.1 Vertical transmission

We implemented the individual-level SIR model (Section 2)

using the data described in Section 2.1. The posterior medians

and 95% credible intervals for the parameters in this model

are shown in Table 1. The estimated intercepts are negative

and relatively large. This corresponds to a small probability of
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T A B L E 1 Posterior estimates and symmetric 95% credible intervals for the individual-level vertical transmission model parameters

Variable Median 95% credible interval
𝛽0 Intercept −2.020 (−2.473, −1.609)

𝛽1 Mother in  −0.438 (−1.311, 0.365)

𝛽2 (Pup Age)(1{Age>2}) 0.244 (0.052, 0.426)

𝛽3 (Mother in *Pup Age)(1{Age>2}) 0.230 (−0.067, 0.546)

𝜃0 Intercept −2.219 (−2.714, −1.780)

𝜃1 Mother in  0.406 (−0.342, 1.122)

𝜃2 (Pup Age)(1{Age>5}) 0.032 (−0.322, 0.290)

𝜃3 (Mother in *Pup Age)(1{Age>5}) −0.110 (−0.636, 0.374)

𝜉0 Intercept −1.396 (−2.929, 0.079)

𝜉1 Pup Age −0.449 (−1.031, −0.007)

F I G U R E 2 The median log relative risk (and 95% credible intervals) of staying in  (left), transitioning from  →  (center), and from

 →  (right) for dogs born to mothers in  versus dogs born to mothers in  . Before age 3, pups born to  mothers are more likely to transition

from  → 

transitioning out of the  category at very young ages, which

agrees with observed transition behavior. The 95% credible

interval for the coefficient for mother’s status (1 if diagnosti-

cally negative, 0 otherwise) is right-skewed; 85.5% of sam-

pled parameter estimates are less than zero. This suggests

some protective effect of being born to an  mother. This cor-

responds to a greater risk for an  →  transition before age

3 for pups born to  mothers (Figure 2, center). This is also

apparent in the results for 𝛽3, the interaction between pup age

and mother’s status (Table 1).

In Figure 2, we examine the log relative risk (RR) of transi-

tions from  (to  , , and ) as a function of pup age. There

is considerable variability in this process; for all transitions,

the 95% credible bands for the log RR cover zero. While pups

born to  mothers are more likely to transition from  to 

before age 3, they are less likely to transition after age 3. This

suggests pups born to  mothers are likely to transition to 

early in life. If we examine the data, these same dogs also die

early. In contrast, those pups born to  mothers that do not

transition before age 3 are likely healthier because they live

longer and transition later (see Web Appendix). Some of the

later results appear to be driven by a survivor bias.

Separate BRNs for vertical transmission are calculated for

pups born to  mothers and to  mothers as described in
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F I G U R E 3 Box plots for reproductive numbers for vertical

transmission. The estimates exceed 1 for both groups, so either degree

of maternal infection in pregnancy can increase the number of infected

dogs from generation to generation. The 95% credible interval for



0 ∕


0 is (0.878, 1.603). 

0 > 

0 for 86.3% of the posterior

predictive data sets

Section 4.1. The median BRN is 2.83, with a 95% credible

interval of (2.20, 3.47) for the former and 3.37 with a 95%

credible interval of (2.54, 4.04) for the latter. Results are

summarized in Figure 3. For 86.3% of the posterior predictive

data sets, 

0 > 

0 . This is compelling given the data. It sug-

gests that dogs born to  mothers are more likely to progress

to infection at some point in their lives than those born to

 mothers. For young dogs (< 3 years), the median risk for

the  →  transition is smaller for dogs born to  moms;

the RR difference is not significant, likely due to sample

size.

5.2 Simulated vector transmission

As described in Section 3.5, we conducted simulation stud-

ies to assess vertically maintained reservoir contributions to

infection in unexposed dogs in the presence of emergent vec-

tor transmission. We considered dogs present in the data set

in 2018 and studied the potential impact of these vertically

exposed dogs on non-vertically exposed canine populations of

various sizes in the presence of a vector. In this data set, there

were four dogs that were seropositive in 2018. To investigate

the contributions of the infectious classes (vertically and vec-

tor infected dogs) to infection in the simulated populations,

we examine the ISEARNs.

The potential for vector transmission in a vertically

maintained reservoir to propagate infection in an unexposed

population depends on average monthly bite rate (𝜆) and

the probability that an infectious bite results in infection (𝑝).

When 𝑁 = 100, the median total RN exceeds one for 𝜆 ≥ 20
and drops below one when the susceptible individuals in  are

exhausted (Figure 4). The RN also depends on the size of the

naive population (𝑁). For 𝜆 = 25, the median reproductive

numbers and associated variability increase as 𝑁 increases.

These results suggest that under reasonable conditions, a ver-

tically maintained canine reservoir could lead to infection of

naive dogs in the area in the presence of a vector. Importantly,

while the shapes of the vertical and vector ISEARN curves

are similar in this simulated example, providing separate esti-

mates allows these results and methods to inform the separate

public health interventions which would address each trans-

mission mechanism. While, from a simple fit perspective, a

more basic model might provide reasonable estimates of an

overall reproductive numbers, such an approach would nev-

ertheless sacrifice biological and practical relevance for dis-

eases such as ZVL.

Recall, these simulations are performed assuming no immi-

gration or births. If new susceptible dogs entered the popu-

lation, infection could be sustained in the population (repro-

ductive numbers greater than or equal to one) even when

the initial population size was small. Also, we assume that

𝔼(𝜋()) = 0.2 and 𝛽() = 1.

6 DISCUSSION

In this paper, we present two Bayesian compartmental models

and associated RNs: an individual-level SIR model designed

to study infection progression as a result of vertical pathogen

exposure used to study L. infantum vertical transmission

dynamics in canines in the Americas and a population-level

SIR model that incorporates contributions of two infectious

hosts and a vector to study the potential impact of emergent

vector transmission in a vertically maintained canine reser-

voir on a naive population (Figure 1). We present RNs for

each model to quantify the different infectious groups’ aver-

age contributions to maintaining infection in the population,

either through vertical or vector transmission (Figure 5).

6.1 Vertical transmission

The finding that mother status impacts vertical trans-

mission attributable infection has direct implications for
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F I G U R E 4 ISEARN and 90% credible intervals for 𝑁 = 100, 𝑝 = 0.01, and 𝜆 = 10 (left), 𝜆 = 20 (left center), 𝜆 = 60 (right center), 𝜆 = 200
(right), and corresponding compartment counts. This figure appears in color in the electronic version of this article, and color refers to that version

F I G U R E 5 ISEARNs and 90% credible intervals for 𝜆 = 25, 𝑝 = 0.01, and 𝑁 = 50 (left), 𝑁 = 100 (center), 𝑁 = 500 (right), and

corresponding compartment counts. This figure appears in color in the electronic version of this article, and color refers to that version

ongoing studies of VL transmission in northern Brazil. When

designing surveillance and culling programs, knowledge of

the role of dam health on pup pathogen load (and thus infec-

tiousness) supports efforts to evaluate related groups of dogs.

In addition, study of the vertical transmission process in iso-

lation allows the current study to directly provide prior infor-

mation concerning the relevant transmission parameters in

ecological models with mixed transmission.
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6.2 Potential vector transmission

Similarly, vector control measures in an area with vector trans-

mission could be effective only temporarily and vulnerable

to regression in the presence of a vertically maintained reser-

voir. To appropriately evaluate multiple overlapping interven-

tions, therefore, future models should relate each intervention

to the transmission process (vertical or horizontal) that is tar-

geted. While the overall goal of such an intervention will be

to reduce the overall RN below the replacement threshold of

1, with multiple transmission mechanisms and corresponding

interventions, such an outcome could be pursued via multiple

intervention strategies. By separately evaluating the impact of

vertical and vector-targeted interventions, future studies will

also allow assessment of the cost effectiveness of different

intervention regimes.

6.3 Limitations and future work

While both the vertical model and vector simulation results

provide important insights into transmission dynamics, this

work has limitations. First, the sample size was small because

only dogs with an established lineage could be used to study

the effect of mother’s health on L. infantum infection progres-

sion. Thus, an objective of this paper is to establish methodol-

ogy to study these progression dynamics. Surveillance efforts

are ongoing, so these models can be applied to larger sam-

ples in the future. Also, a birth process was not incorpo-

rated into the vector transmission simulations. This is valid

if the nonvertically exposed canine population () consists

of spayed/neutered individuals. In the presence of a birth or

immigration process, we expect the infection to persist in the

population because the number of susceptible individuals will

be sustained. Finally, a vertically maintained canine reservoir

likely also would impact humans, so additional simulations

could address human health.

Finally, this paper groups all infected individuals into a

single category due to the small available sample. However,

L. infantum infected individuals can be classified as asymp-

tomatic or symptomatic (Sanchez et al., 2004; Fakhar et al.,
2008; Laurenti et al., 2013). Time spent asymptomatic is often

much longer than that spent symptomatic, and rates at which

individuals in each category transmit infection to sand flies

vary (Laurenti et al., 2013).
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