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Abstract
While a wide variety of machine-learning techniques have been productively applied to diverse prediction tasks, character-
izing the nature of patterns and rules learned by these techniques has remained a difficult problem. Often called ‘black-box’ 
models for this reason, visualization has become a prominent area of research in understanding their behavior. One powerful 
tool for summarizing complex models, partial dependence plots (PDPs), offers a low-dimensional graphical interpretation 
by evaluating the effect of modifying individual predictors on fitted/predicted values. Nevertheless, in high-dimensional 
settings, PDPs may not capture more complex associations between groups of related variables and the outcome of interest. 
We propose an extension of PDPs based on the idea of grouping covariates, and interpreting the total effects of the groups. 
The method utilizes principal components analysis to explore the structure of the covariates, and offers several plots for 
assessing the approximation function. In conjunction with our diagnostic plot, totalvis gives insight into the total effect a 
group of covariates has on the prediction and can be used in situations where PDPs may not be appropriate. These tools 
provide a useful approach for pattern exploration, as well as a natural mechanism to reason about potential causal effects 
embedded in black-box models.

Keywords Data visualization · Model interpretation · Feature exploration · High dimensional · Principal components 
analysis

Introduction

First introduced by Friedman [10], partial dependence plots 
(PDPs) are a model agnostic tool that can help summarize 
the relationships in black-box models. Due to their straight-
forward implementation and concise view of the associa-
tion between the response and covariates of interest, PDPs 
have become an invaluable tool for model interpretation. 
The procedure is further described in Greenwell [14] and 
can be implemented in R [27] with the associated package 
pdp [15]. Despite being applicable in a variety of settings, 
PDPs are limited to low dimensions and perform best when 
the dependence between variables is not too strong [10].

To formally define PDPs, we adopt the notation used in 
Hastie et al. [17]. First, define XT = {X1,… ,Xp} as a vector 
of predictor variables in the model. In addition, let Xs ⊂ X 
and denote Xc as the compliment of Xs , i.e. Xs ∪ Xc = X and 
Xs ∩ Xc = � . The partial dependence of f(X), the approxima-
tion function, on Xs is then defined as

This can be estimated by averaging out the other predictors 
in the model as follows:

Using the above estimator, we can assess the average mar-
ginal effect of Xs on the predictions. Although this approach 
offers simplicity and generality, PDPs have several impor-
tant limitations. First, when constructing PDPs there is an 
assumption of low dependence between the covariates of 
interest and the compliment set. This assumption is often 
violated, and the procedure creates observations that are 

(1)fs(Xs) = EXc

[
f (Xs,Xc)

]
.

(2)f̄s(Xs) =
1

n

n∑

i=1

f (Xs, xic).
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outside of the joint distribution of the training data. In 
essence, PDPs visualize an isolated variable(s) across its 
range while holding all others constant, but this may not 
reflect associations in real datasets, especially with cor-
related predictors. In addition, PDPs are restricted to low-
dimensional views and may not identify complex relation-
ships between multiple covariates and the outcome.

Another well-known agnostic visualization tool, indi-
vidual conditional expectation (ICE) curves [12], offers an 
alternative to PDPs when the effect of a covariate is hetero-
geneous between observations. Similar to PDPs, they plot 
predictions across the range of a covariate while holding the 
others constant. However, instead of averaging all predic-
tions ICE plots generate a separate line for each individual. 
In this way the plots allow for interactions between the fea-
ture of interest and the other input variables in the model. A 
common attribute for these figures is to force all the lines to 
begin from the same starting place to highlight differences 
in trajectory. Similar to PDPs, the procedure to create ICE 
curves gives only unidimensional views into association 
patterns, and may give unrealistic trajectories in the pres-
ence of predictors which co-vary in real samples.

Given the straightforward implementation of the PDP 
estimator, our approach looks to expand its applicability 
to address the limitations described above. This is done 
by providing a related framework where PDPs are con-
structed for the principal components of a matrix trans-
formed by principal components analysis (PCA). Instead 
of looking at the main effect of a single covariate, we group 
similar covariates and offer a more direct look at their total 
effect. Through the loadings associated with the PCA, our 
approach displays interpretable insight into the structure of 
these groups. In addition to the total effect interpretation, 
this approach mitigates some of the issues that arise when 
dealing with highly correlated input variables. Conjointly 
with the PDP extension, we provide a “partial_effects” 
plot, which can be used as a diagnostic tool. To present this 
framework we construct the aforementioned plots in R [27] 
and deliver them through the package totalvis (available at 
https:// github. com/ nicks eedor ff/ total vis).

The outline of the paper is as follows. We first provide a 
summary of related model agnostic interpretation methods 
and lay out the package components of totalvis. Follow-
ing this, we display several simulated examples to motivate 
both the total effect interpretation and the usefulness of the 
diagnostic tool. Lastly, we present an application using a 
dataset from the UCI Machine Learning Repository [9].

Related Work

PDPs and ICE Curves

PDPs serve as the starting point to our approach. These were 
outlined in the introduction and are referenced throughout 
the paper. ICE curves were also summarized and further 
details can be found in [12], who produced an associated 
package ICEbox [13]. For the sake of completeness, we 
include the ability to plot simple ice curves in totalvis, but 
direct the interested reader to ICEbox for increased function-
ality. In the rest of this section, we summarize other promi-
nent model agnostic interpretation methods.

M Plots

Marginal plots, known as M Plots, offer an approach to 
avoiding extrapolation in the feature space. When dealing 
with correlated covariates, Partial dependence and ICE plot 
procedures generate predictions using observations outside 
of the joint distribution of the training data. An example of 
this can be seen in Fig. 1, where the red triangles indicate 
the data used to calculate f̄1(X1 = 1.5).

M plots avoid this issue by integrating over the condi-
tional density instead of the marginal density. The depend-
ence functions can be described as

(3)fs,M(Xs) = EXc|Xs

[
f (Xs,Xc)

||Xs = xs].

Fig. 1  Extrapolation of the input space may occur while generating 
PDPs when features are correlated. Calculating the average prediction 
for a given value of X1 uses points (red triangles) which fall well out-
side the joint distribution of the training data

https://github.com/nickseedorff/totalvis
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These can be locally approximated with Eq. 4, although 
more complex kernel smoothing methods are often used 
[2]. In the equation, N(Xs) denotes the indices for an appro-
priately selected neighborhood containing an observed 
value xis while n(Xs) is the number of observations in the 
neighborhood:

[2, 10], and [17] cite significant drawbacks of this approach. 
The most prominent issue is that the method is equivalent 
to evaluating the effect of Xs while ignoring the effects of 
Xc [17]. The result is that the main effect of the covariate of 
interest, Xs , cannot be distinguished from the effects of cor-
related variables (omitted variable bias) [2].

Accumulated Local Effects

Accumulated Local Effects (ALE) plots address several 
shortcomings of M plots and PDPs, but interpretation is 
intended for low-dimensional effects [2]. Specifically, ALE 
plots avoid the issue of extrapolation far outside of the fea-
ture space (PDPs) without biased or misleading results (M 
plots) and can be implemented in R [27] through ALEPlot 
[1]. The ALE main effect of Xs is defined as

where f s(Xs,Xc) =
�f (Xs,Xc)

�Xs

 , which is replaced in the estima-
tion procedure by differences in predictions, and z0s is cho-
sen to be just below min{xis ∶ x = 1, 2,… ,N} . Apley [2] 
develops the method and estimation procedure, paired with 
applied examples comparing PDPs, M plots, and ALE plots. 
Molnar [24] gives an overview of ALE plots and advocates 
their use over PDPs in most situations due to correlation 
between features.

Feature Importance

Feature (variable) importance measures can be used to iden-
tify predominant features in a fitted model. Available meas-
ures and implementation details can vary by algorithm, but 
we summarize the commonly used permutation approach, 
which was highlighted by Breiman [4] while introducing 
Random Forests. For Random Forests, we first calculate the 
out of bag (OOB) prediction error for each tree. We then 
permute one of the variables ( Xi ), destroying its relation-
ship with the outcome, and once again calculate the OOB 
prediction errors. Finally, the variable importance for Xi is 
calculated as the difference in prediction error between the 
permuted and non-permutated OOB estimates, averaged 

(4)f̄s,M(Xs) =
1

n(Xs)

n∑

i∈N(Xs)

f (Xs, xic).

(5)fs,ALE(Xs) = ∫
Xs

z0s

EXc

[
f s(Xs,Xc)

||Xs = zs]dzs − constant,

over each tree [25]. The package randomForest [19] normal-
izes these values by the standard deviation of the differences 
and provides another measure of feature importance based 
on node impurities. Calculating the difference in prediction 
error for the entire model, rather than individual trees, while 
using either the training or testing dataset gives a model 
agnostic approach to feature importance [24].

Recent work from Covert et al. [6] based on Shapley val-
ues, a concept from coalitional game theory, presents an 
alternative model agnostic approach to feature importance. 
Shapley values can additionally be used to explain predic-
tions for specific instances ([20, 24, 32]) and can be imple-
mented through the iml package [23].

Other Model Agnostic Interpretation Methods

A straight forward approach to interpreting a black-box 
model is to fit a simpler model, such as a generalized linear 
model, using the original features and the black-box model’s 
predictions. Traditional metrics such as R2 can then be used 
to assess how well the simple surrogate model represents the 
original model [24]. Since the surrogate model is trained on 
predictions from the black-box model, conclusions should 
be about the model and not inference on the data. In addi-
tion, using surrogate methods, Local Interpretable Model 
Agnostic Explanations (LIME) present explainable predic-
tions by constructing local surrogate models that focus on 
individual predictions [28] and can be used with the lime 
package [26]. For assessing the importance of feature inter-
actions in their model, we direct readers to the iml package 
[23], which estimates the strength of feature interactions 
through the H-statistic as defined in [11]

Principal Components Analysis

Principal components analysis (PCA) is a dimensionality 
reduction technique that can increase interpretability in large 
datasets by making the structure clearer [3]. PCA has wide-
spread application in a number of domains including image 
compression, facial recognition, and analyses for massive 
genomic datasets, and is a key component of our method. 
Dimensionality is reduced by finding orthogonal linear com-
binations of variables that successively maximize variance 
([3, 18]), with the hope that a relatively small number of 
principal components explain a large portion of the vari-
ability. The optimal solution can be found either through an 
eigendecomposition of the covariance matrix [18], or as is 
implemented in totalvis through the prcomp() function in the 
stats package [27], by a singular value decomposition of the 
centered and scaled design matrix. Once solved, structure 
can be explored by interpreting the coefficients (loadings) of 
the linear combinations (principal components).



 SN Computer Science (2021) 2:141141 Page 4 of 12

SN Computer Science

Novel Contributions

The primary contribution of this manuscript is a PCA-
based model agnostic tool that groups related features and 
allows for visual interpretation of their combined effect. The 
method offers a promising avenue for interpretation in high-
dimensional and high-dependence situations, and is paired 
with a diagnostic plot to help assess when its use may or may 
not be appropriate.

Package Components

The most important functions in totalvis are

• totalvis()
• partial_effects()
• plot() (methods added to the generic function)

Total Effect Plot

The underlying principle behind totalvis() is to work with 
groups of covariates that have been formed based on a 
transformation of the design matrix using PCA. The matrix 
of principal components is altered in a specified way and 
transformed back to the original scale for prediction. To be 
explicit, PCA is done to explore the structure among the 
covariates, but all predictions are done on the original scale 
used with whatever model the user employs. PCA is not 
required or intended to be a part of the actual black-box 
model under investigation, which may be a random forest, 
series of gradient boosted trees, neural network, or similar. 
The implementation of totalvis() allows users to visualize 
the average prediction for any principal component with a 
procedure that can be summarized as follows 

In the standard implementation of PDPs, there is a direct 
mapping between the value every element of �� is set to and 
the value of the covariate of interest. Algorithm 1 reflects 
this direct mapping by plotting a mean prediction against a 
specific value for a principal component. However, totalvis() 
also provides an option to visualize the average prediction 

against the mean of a specified covariate, which may be 
advantageous when a user is interested in understanding the 
typical behavior associated with a chosen feature.

In addition to the predictions, an object returned by 
totalvis() contains the components of the PCA. We incor-
porate details of the transformation using the magnitudes 
of the loadings as a measure of covariate importance to the 
principal component. To summarize this information, vari-
ables with the largest loadings are presented when plotting a 
“totalvis” object with arrows indicating the direction of their 
relationship with the principal component.

Total Effect Plots with a Pinned Feature

Given the limited interpretability of the x-axis when plot-
ting against the range of a principal component, totalvis() 
allows the user to plot the prediction against a covariate of 
interest. We refer to this as ‘pinning’ a covariate. To do this, 
after the matrix has been mapped back to the original space, 
we average over the variable of interest and plot this value 
against the mean prediction. More formally this can be seen 
as plotting all pairs of

where ��(vk) is a specified vector obtained from transforming 
� back to the original space. For clarity, vk is a value in the 
sequence specified for the lth principal component. In addi-
tion, note that the values of zij(vk) are implicitly associated 
with the chosen principal component.

Partial Effects Plot

totalvis() works by defining orthogonal linear combinations 
of the input variables and summarizing their effect on the 
outcome. Thus, it is important to ensure that the grouped 
covariates act in unison. Since PCA does not consider the 
relationships with the response, we need to identify when 
correlated variables behave differently than expected on 
the predictions. To address this concern, we provide par-
tial_effects() as a way to check assumptions and provide 
further insight into the dependence structure. The process 
for generating ’partial_effects’ plots is described in detail in 
algorithm 2, while the general procedure and interpretation 
are summarized in the following paragraphs. 

(6)

{
1

n

n∑

i=1

zij(vk), f̄l(�(vk))

}
,
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At a high level, for a specified principal component we 
give every observation the same value, vn , and obtain the 
mean prediction. Denote the matrix that was used for pre-
diction as �(vn) and observe that this matrix is the result of 
a transformation back to the original scale. The procedure 
then increases the value of the principal component to vn+1 
and generates a new prediction matrix, �(vn+1) . Following 
this, the algorithm takes all the columns except one from 
�(vn+1) and replaces them with columns from �(vn) , creat-
ing a matrix with only a single modified covariate (relative 
to �(vn) ). In general, a mean prediction is obtained, as well 
as the difference between this value and the average predic-
tion resulting from �(vn) . We also provide the option to plot 
the average “shifted” predictions alongside the total effect 
curve, as this may help contextualize the diagnostic lines; an 
example of this can be referenced in Fig. 11.

The algorithm implements the above procedure using 
a sequence of equally spaced points from the minimum 
to the maximum of the principal component. The process 
is repeated for a select number of inputs that were main 
contributors to the principal component. In summary, we 
plot the differences in mean predictions caused by altering 
a single covariate in the appropriate direction and magnitude 
(based on the loadings). In the resulting plot, concordant 
signs (magnitudes may vary) across all input variables indi-
cates that features are working in unison on the prediction.

Package Specifications and Defaults

totalvis is applicable in both the regression and binary 
classification settings. In regression, totalvis() and partial_
effects() work with any model whose predict method uses 
a “data.frame” object. Note that the predict method for the 
trained model needs to be available in the local environment. 
totalvis functions also work with models fit using the caret 
[21] and MachineShop [31] meta-packages, as well as a few 
specific modeling types listed in Table 1.

Implementation of totalvis() relies on a transformation of 
a matrix of explanatory variables. For this reason, the pack-
age requires input of a numeric matrix or data frame with 
all numeric columns. In addition, the input matrix should 
exclude the response. To work with data that has categori-
cal variables, the data should be properly encoded prior to 
training the model. Points are presented below to summarize 
this information, as well as provide additional details about 
the package.

• totalvis() requires input of numeric matrix or a data frame 
with all numeric columns (excludes the response)

• Categorical variables should be appropriately encoded 
before training the model

• totalvis() plots mean predictions against a sequence of 
values whose percentiles are equally spaced; the default 
is 50 points

• partial_effects() plots mean predictions against a 
sequence of equally spaced values; the default is 20 
points

• prcomp() from the stats package is used for all PCA 
based transformations

• partial_effects() plots use a color blind friendly palette 
with 8 colors; colors are recycled if needed

• totalvis() and partial_effects() assume regression by 
default, classification must be specified through the 
“type” argument

• ”Rugs” are included when plotting to avoid interpreting 
predictions from areas of low density

• totalvis() and partial_effects() plots can be generated for 
any principal component with the “pc_num” argument

Motivating Examples

To illustrate the attributes of totalvis, and to display the use 
and interpretation of the total and partial effect plots, we 
construct several simulated examples.

Total Effect

To demonstrate the notion of a ‘total effect’ of a group of 
covariates, we generate an example in which two correlated 

Table 1  Available model types for classification and regression using 
the totalvis package

Type of model/package Package Class

Boosted trees gbm [16] ”gbm”
xgboost [5] ”xgb.Booster”

Generalized linear models stats [27] ”glm”, ”lm”
Random forest randomForest [19] ”randomForest”
Support Vector Machine e1071 [22] ”svm”
Meta-packages caret ”train”

MachineShop ”MLModelFit”
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covariates affect the outcome in piecewise linear fashions. 
Further, the covariates impact the outcome in different 
regions of their space and the goal is to capture their net 
effect. Data were generated according to Eqs. 7 and 8, while 
exact specification and replication of the simulation can be 
found in Sect. “PDPs and ICE Curves” of the “Introduction” 
vignette. Instructions for downloading totalvis and accessing 
the vignette can be found in the associated GitHub reposi-
tory.1 The example showcases the ability of totalvis() to 
group related covariates and express the combined impact 
they have on the response. Note that the PCA transforma-
tion is ideally suited to situations in which some correlation 
exists between covariates.

The PDPs for the covariates (Figs. 3 and 4) capture the 
intended trends. As simulated, the covariates act in different 
locations on the real line, and the first principal component 

(7)
(
Xi1

Xi2

)
∼ N

((
1

1.2

)
,

(
1 0.2

0.2 1

))

(8)

yi = �[Xi1>0.5]
+ 2Xi1�[Xi1 <= 0.5] + �[Xi2<0.5]

+ 2Xi1�[Xi2>=0.5]
+ 𝜖i

𝜖i ∼ N(0, 0.2)

captures the combined effect across the range (Fig. 5). This 
example 2 used a k-nearest neighbors model from the kknn 
package [30] which was fit using the meta-package Machine-
Shop [31].

A practical example of comparable piecewise trends is 
related to medical expenses and quality of life. When dealing 
with an extended hospital stay or illness, future quality of 
life may be immediately impacted by treatment costs. How-
ever, the affect medical expenses have on the quality of life 
may taper off once an individual reaches their deductible or 
out of pocket maximum. At the same time, missing a couple 
days of work may not have drastic consequences on future 
quality of life. Yet, as the time missed increases, patients 
lose out on potential earnings and opportunities for career 
advancement. Combined, these two measures may better 
quantify the net financial burden caused by a medical issue 
and could be interpreted through their total effect.

Fig. 2  R code for partial dependence and total effect plots for the first 
simulation

Fig. 3  PDP of X1 where features are correlated and have similar 
effects on the outcome

Fig. 4  PDP of X2 where features are correlated and have similar 
effects on the outcome

Fig. 5  Total effect plot of the first principal component where fea-
tures are correlated and have similar effects on the outcome. Direc-
tions of the associated loadings are reported in the legend

1 https:// github. com/ nicks eedor ff/ total vis.

https://github.com/nickseedorff/totalvis
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Correlated Features with Different Effects

As previously indicated, totalvis() plots the effects of 
linear combinations of correlated covariates. However, 
the PCA transformation does not take the outcome into 
account, and the principal components should, therefore, 
be assessed to see if the covariates contribute construc-
tively to the outcome. With this goal in mind, the next 
example (Eqs. 9 and 10) introduces a situation in which 
variables which are correlated nevertheless have opposite 
effects on the outcome of interest. Details of the simula-
tion can be found in Sect. “M Plots” of the vignette. This 
demonstrates an important use of partial_effects(), not 
only to check assumptions, but also to illustrate interest-
ing and important patterns of dependence. The model 6 
in question was fit using gradient boosted trees, via the 
gbm() function in the gbm package [16].

(9)
(
Xi1

Xi2

)
∼ N

((
2

2

)
,

(
1 0.9

0.9 1

))

(10)yi = Xi1 − Xi2 + �i�i ∼ N(0, 0.1)

The average prediction for the totalvis() plot in Fig. 7 jumps 
around zero, which was expected given the nullifying effects 
of the covariates. Used as a reference for interpretation, the 
black line at 0 in the partial_effects() plot (Fig. 8) indicates 
the average prediction when the principal component is set 
to the corresponding value of the x-axis. Across the range of 
the principal component, shifting the input variables sepa-
rately shows opposing influence on the predictions, thus 
capturing their counteractive behavior. This application rep-
resents a situation in which the lines of the partial_effects() 
plot do not exhibit similar patterns; another example of this 
is presented in Fig. 11 while partial effect lines of a consist-
ent nature are seen in Fig. 20.  

Correlated Feature with No Effect

In the final example, we assess the ability of totalvis() to 
correctly identify which inputs are relevant to the response. 
To accomplish this, we generate two highly correlated 
covariates, but only one acts on the outcome (Eqs. 11 
and 12). Full specification of the example is located in 
Sect. “Accumulated Local Effects” of the vignette. A 
suitable method for interpreting a model trained with this 
data should avoid major extrapolation outside the feature 
space (a drawback of PDPs and ICE plots) while correctly 
capturing the relevant inputs. In addition to motivating 

Fig. 6  R code for total effect and partial effect plots for the second 
simulation

Fig. 7  Total effect of the first principal component where features are 
correlated and have contrasting effects on the outcome. Directions of 
the associated loadings are reported in the legend

Fig. 8  Partial effects of the first principal component where features 
are correlated and have contrasting effects on the outcome

Fig. 9  R code for pin and partial effect plots for the third simulation
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insights to be gleaned from partial_effects(), this also dem-
onstrates the use of totalvis in the classification setting. To 
evaluate the simulation we trained a single-layer neural 
network 9 from nnet [29] using the caret package [21].

To visually summarize the model while avoiding observa-
tions drastically outside of the input space, ALE or M plots 
could be implemented. ALE plots are a suitable replace-
ment for determining which features affect the outcome, 
however, they have limited applicability when the goal is 
interpretation of groups of features. On the other hand, M 
plots cannot discern the effects between the two covariates 

(11)
(
Xi1

Xi2

)
∼ N

((
2

2

)
,

(
1 0.8

0.8 1

))

(12)
yi = �[(Xi1+𝜖i)>1.5]

𝜖i ∼ N(0, 0.1)

and, in isolation, the totalvis pin plot approach has a similar 
result (Fig. 10). To address this issue, we make use of the 
non-differenced partial_effects() plot. When the principal 
component is between − 2 and 0.5 (Fig. 11), shifting X1 
produces substantially higher predicted values. On the other 
hand, shifting X2 alone produces a curve that is nearly iden-
tical to the total effect (black line), thus suggesting that X2 
has little influence on the predictions.  

An Application of totalvis

We present a motivating application of totalvis using a sub-
set of the “Communities and Crime Unnormalized Data 
Set” located in the UCI repository [9] and compiled from 
several sources [7, 8, 33, 34]. The selected subset contains 
all numeric input variables with no missing values; the 
analysis is fully replicated in Sect. “Package components” 
of the “Introduction” vignette. We chose to use the number 
of murders per 100k population as our response variable 
(murdPerPop). The data used has 101 covariates, with more 
than 12% of the absolute correlations above 0.5.

To begin we fit a model using the randomForest() func-
tion from randomForest package [19]. randomForest offers 
a measure of feature importance which can be referenced 
in Fig. 12. PDPs are often created for the most important 
input variables; we take a detailed look at “pctKids2Par”. In 
Fig. 13 we see a handful of covariates that are strongly cor-
related with “pctKids2Par”, presenting an issue with PDPs. 
Note that several of the features listed in the importance 
plot could be viewed as indicators of neighborhood financial 
status.

Next we implement the totalvis() function 14 and visual-
ize the output

Fig. 10  totalvis pin plot for the first principal component and feature 
X2. In this example, features are correlated yet only X1 affects the 
outcome

Fig. 11  Non-differenced partial effects for the first principal compo-
nent where features are correlated yet only X1 affects the outcome

Fig. 12  Feature importance for the “randomForest” fit with the com-
munity and crimes data



SN Computer Science (2021) 2:141 Page 9 of 12 141

SN Computer Science

The covariates with the strongest influence on the first 
principal component are presented with arrows in Fig. 15 
and on the associated table. The listed covariates could 
all be interpreted as indicators of the financial status of a 
neighborhood (descriptions can be found in Table 2 in the 
appendix). In addition, worth noting is that the signs of 
the loadings are as expected; covariates whose relation-
ship with income differ enter the linear combination with 
opposite signs (example: medFamIncome vs pctPoverty). 
Seen at a group level, an initial decrease in income in 
a neighborhood is associated with a decrease in crime. 
However, after a principal component value of roughly 
− 3.5 we see drastic a increase in crime as the princi-
pal component increases (covariates positively related to 
income decrease).

Note: When plotting a “totalvis” object the default is 
to return a dataframe with the information from the table 
in Fig. 15. This can be turned off by setting the return 
“return_res” argument in plot() to FALSE.

Total Effect Interpretation

Continuing with the crimes dataset and the first principal 
component, we compare a plot of totalvis() pinned to a 
specific feature (Fig. 17) to a PDP 16 for the same covari-
ate (Fig. 18).

In the resulting “Pin Plot”, related covariates increase/
decrease in relation to the covariate of interest. This allows 
us to explore what typically happens across the range, 
i.e., correlated features are allowed to behave as expected. 

Fig. 13  Absolute correlations between pctKids2Par and the other fea-
tures in the community and crimes data

Fig. 14  R code for the total effect plot for the Community and Crimes 
application

Fig. 15  totalvis() plot using the communities and crime data along 
with the associated totalvis() default output table. Directions of the 
loadings can be referenced in the plot, while directions and magni-
tudes of the loadings of the most important features are given in the 
Table

Fig. 16  R code for the pin and partial dependence plots for the Com-
munity and Crimes application

Fig. 17  Pin plot of variable ‘pctKids2Par’ and the first principal com-
ponent using the communities and crimes data
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Comparing this to the PDP in Fig. 18, we see a large dif-
ference in the scale of the y-axis. Given the dependence 
between the covariates in the PDP, the main takeaway is 
the shape of the curve and not the scale of the y-axis. Due 
to this, we feel our approach offers more realistic changes to 
the average predictions and is more in line with a total effect 
interpretation. Note that the PDP could alternatively have 
been constructed using partialPlot() from the randomForest 
package [19].

Diagnostic Plot

While the total effect plots illustrated thus far are useful, they 
implicitly assume that the principal components structure of 
the covariates is meaningfully reflected in the data generat-
ing mechanism. To assess the reasonableness of this assump-
tion, as well as to further explore the underlying relationships 
between covariates and the outcome, we utilize the differ-
enced (default) partial_effects() plot 19. In Fig. 20, we see that 
the partial effects of the top loading variables in first principal 
component are generally positive, although the magnitudes 
differ due to their individual importance to the model. This 
is an example of a situation in which the grouped covariates 
primarily act as expected, jointly contributing to the outcome. 
In such a setting, the underlying assumptions of the total effect 
plot would seem to be reasonable.

Discussion

As presented, the totalvis method has applicability as a 
model agnostic visualization tool in a variety of settings, 
including high-dimensional and high-dependence situations, 
as well as offering a natural approach to reason about poten-
tial casual effects. The method provides a natural compan-
ion to partial dependence and ICE plots to enable users of 
black-box models to understand and investigate the patterns 
learned by their models.

This area remains ripe for further investigation. In par-
ticular, the requirement to perform PCA imposes an addi-
tional computational burden on the user, above and beyond 
that required to fit the original models. Investigation of scal-
able approaches to totalvis-like visualization methods would 
increase the scope of application. In addition, more work to 
formally investigate the relationship between these techniques 
and causal models could potentially provide diagnostic tools 
as well as inspiring new quantitative approaches to effect esti-
mation in causal machine learning models.

Nevertheless, these techniques are already readily applica-
ble to many analytical problems and numerous model types, 
and are readily extensible to new modeling approaches. All 
materials and methods to reproduce these results are available 
on https:// github. com/ nicks eedor ff/ total vis, which includes a 
vignette that reproduces all tables and figures presented here.

Appendix

See Table 2 for a summary of the relevant variables explored 
in the community and crimes application.

Fig. 18  PDP of variable ‘pctKids2Par’ using the communities and 
crimes data

Fig. 19  R code for the partial effects plot for the Community and 
Crimes application

Fig. 20  Diagnostic plot for the first principal component using the 
community and crimes data. In general, shifting an individual fea-
ture increased the averaged predicted outcome indicating the grouped 
covariates largely act as expected

https://github.com/nickseedorff/totalvis
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