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Summary. The various thresholding quantities grouped under the “Basic Reproductive Number” umbrella are often con-
fused, but represent distinct approaches to estimating epidemic spread potential, and address different modeling needs. Here,
we contrast several common reproduction measures applied to stochastic compartmental models, and introduce a new quantity
dubbed the “empirically adjusted reproductive number” with several advantages. These include: more complete use of the
underlying compartmental dynamics than common alternatives, use as a potential diagnostic tool to detect the presence and
causes of intensity process underfitting, and the ability to provide timely feedback on disease spread. Conceptual connections
between traditional reproduction measures and our approach are explored, and the behavior of our method is examined under
simulation. Two illustrative examples are developed: First, the single location applications of our method are established
using data from the 1995 Ebola outbreak in the Democratic Republic of the Congo and a traditional stochastic SEIR model.
Second, a spatial formulation of this technique is explored in the context of the ongoing Ebola outbreak in West Africa with
particular emphasis on potential use in model selection, diagnosis, and the resulting applications to estimation and prediction.
Both analyses are placed in the context of a newly developed spatial analogue of the traditional SEIR modeling approach.
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1. Introduction
The basic reproductive number, R0, is an important quantity
in epidemiology. While its interpretation must be adapted to
the problem of interest, in general terms, the basic reproduc-
tive number captures the expected number of secondary in-
fections produced by a single infected individual in an entirely
susceptible population. This seemingly intuitive definition is
complicated by authors’ varying implementations, which gen-
erally share the same thresholding properties but carry dif-
ferent interpretations. This is especially confusing given the
similar terminology used in stochastic and deterministic epi-
demic models. Heffernan et al. (2005) note that: “Surveying
the recent literature, it quickly becomes apparent that a number
of related quantities, all of which share this ‘threshold’ behav-
ior, are used as surrogates for R0. For example, Rn

0 (n > 0)
will give an equivalent threshold, but does not give the number
of secondary infections produced by a single infectious individ-
ual.” The authors go on to describe several commonly used
approaches to R0 estimation in deterministic models which
may or may not give accurate estimates of the traditionally
defined basic reproductive number, including examining sta-
bility conditions, testing for the existence of a disease free
equilibrium, and characteristic equation methods.

Other authors define several reproductive numbers. In par-
ticular, a traditional estimate of R0 is sometimes presented
alongside a temporally varying generalization, and a scaled
version sometimes termed the “effective reproductive num-

ber” (Lekone and Finkenstädt, 2006; Chowell et al., 2004).
The latter measure, discussed below, departs from the tradi-
tional definition of R0, and yet incorporates only a portion of
the disease dynamics described by the encompassing modeling
framework.

In part, this diversity may be attributed to the fact that
the basic reproductive number, as usually defined, is some-
what removed from actual epidemics. The quantity requires
that the modeler posit an entirely susceptible population,
and takes epidemic behavior at a singular instant (or window
for discrete models) in time, mathematically extrapolating
said behavior into the future. In contrast, real epidemics can
be extremely variable, and are not always well summarized
by a single number. Here, we examine a different approach
to estimating the reproductive characteristics of epidemics,
and demonstrate improved ability to detect changes in trans-
mission behavior not explicitly accounted for by the model.
Termed the “empirically adjusted reproductive number” and
denoted R(EA), we define a quantity which is easily derived for
any discrete time stochastic epidemic model. It is developed
here for a flexible class of spatial epidemic models known as
stochastic spatial SEIR models.

Simply put, we are interested in estimating the expected
number of secondary infections which a particular individ-
ual from a particular spatial location will cause in real pop-
ulations: a measure uniquely suited to detecting changes in
epidemic behavior for underspecified models and providing
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early indications of the effectiveness of intervention efforts.
Hethcote (2000) defines a similarly motivated quantity known
as the replacement number for deterministic versions of the
models discussed here. However, simple intuitions from deter-
ministic epidemic models do not always translate to stochastic
formulations; in particular, the replacement number is defined
to be strictly less than the basic reproductive number, while
the true number of secondary infections caused per infectious
individual can vary widely over the course of real and stochas-
tically simulated epidemics.

After a brief review of current compartmental modeling
techniques, we introduce the stochastic spatial SEIR model
class, following many standard conventions for the specifica-
tion of hierarchical models (Cressie and Wikle, 2011). While
the general approach to R(EA) estimation described here is
easily applicable to a wide array of epidemic models, this
family provides a natural and flexible framework for its de-
velopment. In this setting, we compare several common re-
productive numbers and derive our own, considering also the
conceptual and mathematical relationships between them. Fi-
nally, the practical implications of reproductive number choice
are explored via several simulations and two examples: the
1995 Ebola outbreak in the Congolese city of Kikwit, and the
2014 Ebola epidemic in West Africa. The first example illus-
trates the strong contrast, even in well studied epidemics, be-
tween reproductive numbers for both well and underspecified
intensity processes. The second demonstrates the applicabil-
ity of this technique to emerging and evolving epidemics in
real time over multiple spatial locations, and emphasizes the
oversimplification of disease dynamics which can occur with
traditional epidemic thresholding parameters.

2. The Spatial SEIR Model

2.1. Background

Compartmental models have a long history in the epidemic
modeling literature, beginning with the SIR technique spec-
ified by Kermack and McKendrick (1927). These models
are named for the disease states, or compartments, which
define them. The most commonly used disease states are
Susceptible, Exposed, Infectious, and Removed. These cat-
egories describe individuals in a population who are, respec-
tively, able to contract an infection, are infected but not yet
infectious, have become capable of spreading an infection, and
are permanently removed from the susceptible population by
death or recovery with immunity.

Numerous extensions to this framework have been devel-
oped in the intervening years, though only recently have
stochastic formulations received a thorough spatial treatment.
Cook et al. (2007) introduce heterogeneity in two ways: by as-
suming the existence of favorable and unfavorable hosts, and
by imposing a network based contact structure in what they
call an S-I percolation model. Another approach was devel-
oped by Hooten et al. (2011), who used an additive approach
to estimating infectivity within and between contiguous spa-
tial units for an SIRS model of influenza data. Taking a dif-
ferent perspective, Deardon et al. (2010) introduce individual
level models incorporating measures of distance into contact
probabilities between epidemiological units. Much of this gen-
eralization has been done in the context of the recent foot and

mouth disease outbreaks in the U.K., developing heteroge-
neous, spatially distributed, and partially censored epidemic
processes (Chis Ster and Ferguson, 2007; Chis Ster et al., 2009;
Jewell et al., 2009).

Additional work has focused on household models, where
houses define population clusters and SIR or SEIR compart-
ment structures provide a model for disease transmission
(e.g. (Cauchemez et al., 2004, 2009; van Boven et al., 2010)).
Such techniques generally consider epidemic spread within
population clusters and with exogenous sources, whereas our
approach focuses on pathogen spread within and between
population clusters. Compartmental dynamics have also been
examined over analogous social or contact networks, most
commonly from a simulation perspective (Keeling, 2004;
Verdasca et al., 2005).

Sattenspiel and Dietz (1995) model spatial heterogeneity in
a SIR framework by incorporating contact probabilities be-
tween spatial locations weighted by travel propensity and re-
turn rates in a mover-stayer framework, while Jandarov et al.
(2014) consider epidemic spread to decrease with distance
between units in an approximation to a gravity model. As
spatiotemporal epidemic models present considerable compu-
tational challenges, many authors pursue hybrid approaches,
which combine stochastic simulation and systems of ordinary
and partial differential equations (LaBute et al., 2014). The
fully probabilistic work of Porter and Oleson (2014) most
closely matches our spatial development.

2.2. Data Model

A first step in building hierarchical epidemic models is to es-
tablish the relationship between the observed data and the
model parameters; while the most common approach to this
problem is to assume that a particular quantity is accurately
and completely observed, it is often more reasonable to as-
sume that some other relationship exists. For a spatial SEIR
model over time points {ti : t1, ..., tT } and spatial locations
{sj : s1, ..., sn}, the observed data are denoted Y = [y1 ... yn],
where yj is a T × 1 column vector containing data for location
sj. We will continue to use i to denote a temporal index and j

to denote a spatial index throughout this work. Y may corre-
spond either to the number of new infections or the number
of individuals removed from the infectious population at each
location/time pair, unknown quantities respectively denoted
by the identically indexed T × n matrices: I∗ and R∗. A com-
plete data model is specified by an appropriate distribution g

with parameter vector �. For example, {yij |I∗
ij}

ind∼ g(I∗
ij, �) for

i = 1, . . . , T ; j = 1, . . . , n. This structure can take innumer-
able forms, including identity, overdispersion, and binomial
proportion. The choice of data model is ultimately dictated
by the data used, constrained of course by the software avail-
able and parameter identifiability.

2.3. Temporal Process Model

The temporal structure employed by spatial SEIR models is
their eponymous trait. S ,E, I, and R are all T × n matri-
ces, and contain the unknown count parameters correspond-
ing to the susceptible, exposed, infectious, and removed com-
partments, respectively. Their temporal relationship is de-
scribed as a set of difference equations: Si+1 = Si − E∗

i ; Ei+1 =
Ei − I∗

i + E∗
i ; Ii+1 = Ii − R∗

i + I∗
i ; Ri+1 = Ri + R∗

i , subject
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to the constraint that Si + Ei + Ii + Ri = N ∀ i. Here, N is
the vector of fixed population sizes and i again denotes a par-
ticular time unit ti.

The elements of the transition matrices, denoted above
with asterisks, capture the number of individuals transition-
ing into each compartment of the same label. E∗

ij, for ex-
ample, defines the newly exposed individuals at time ti and
spatial location sj. These components are assigned the fol-

lowing chain binomial structure: {E∗
ij|π(SE)

ij , Sij}
ind∼binom(Sij,

π
(SE)
ij ), {I∗

ij|π(EI), Eij}
ind∼binom(Eij, π

(EI)), and {R∗
ij|π(IR), Iij}

ind∼
binom(Iij, π

(IR)).

2.4. Spatial Process Model

The exposure probabilities, {π(SE)
ij }, provide a clear way to in-

corporate spatial heterogeneity. They describe a combination
of pathogen infectivity and population mixing. This structure
must therefore capture the relationship of the pathogen and
population to any predictor variables as well as any spatial
heterogeneity. Here, we briefly note the motivating assump-
tions and chosen spatial parameterization; additional details
may be found in Web Appendix 1.1.

Consider the process by which people become infected with
a communicable disease. Namely, consider the situation in
which a person “A” has contacted another person, “B,” who
is infectious (for some suitable definition of contacted). Let
p be the probability that person “A” becomes infected with
the disease, and let q = 1 − p. Now we introduce a number
of assumptions. First, assume that the number of “contacts”
Kij between a person of interest and other individuals within
a spatial unit sj at time ti follows a Poisson distribution,
Kij ∼ Pois(λij). Second, when individuals travel to other spa-
tial locations, their contact behavior is assumed to be well
modeled by the contact behavior of that spatial unit. Finally,
let contact between spatial locations be proportional to some
known function f (djl), where djl is a specified distance metric
between spatial locations sj and sl.

Define δij to be the proportion of persons who are infectious
at time ti in spatial unit sj, and p to be the probability an
individual becomes infected given an epidemiologically signif-
icant contact. Then, letting Inf(ti, sj) denote the event that a
person in spatial unit sj becomes infected at time ti, we can
derive the probability

P(Inf(ti, sj)) = π
(SE)
ij = 1 − exp

[
−δije

θij −
∑
{l �=j}

(f (djl)δile
θil)

]hi

(1)

where θij = log(λijp) is the exposure intensity parameter for
time ti and location sj, a reparameterization required for iden-
tifiability. The temporal offset, hi, captures the relative length
of continuous time over which the events are accumulated.

This approach immediately generalizes to the case in which
contact between spatial locations depends on more than one
distance parameter by relaxing the assumption that contact
between spatial locations is proportional to a single distance
metric. To strike a balance between flexibility and simplicity,
each distance measure of interest is specified as an n by n

matrix, defining the set {Dz : z = 1, ..., Z} with corresponding
spatial autocorrelation parameters {ρz} subject to

∑Z

z=1
ρz ≤ 1

and {0 ≤ ρz < 1 : z = 1, ..., z}. This formulation gives rise to
the exposure probability

π
(SE)
ij = 1 − exp

⎡
⎣

{
−ηi. −

Z∑
z=1

ρz(Dzηi.)

}hi

j

⎤
⎦,

where ηi. = {δi1e
θi1 , ..., δine

θin }. By appropriately defining “dis-
tance” matrices, this spatial probability structure provides
innumerable configurations, including, but not limited to,
the usual Conditionally Auto-Regressive (CAR) model class
of spatial dependence structures (Banerjee et al., 2004). Of
course, one must be careful to ensure that the column spaces
of the chosen matrices are distinct to maintain the identifia-
bility of the autocorrelation terms.

2.5. Parameter Model

While most of the aforementioned parameters have natural
prior distributions, there are a few structural notes worth dis-
cussing. First and foremost, the intensity process described by
the set of parameters θ, where [θ]ij = {θij}, is often of great in-
terest to researchers. Estimation of a distinct parameter for
each spatial location and time point is impossible, but a lin-
ear predictor prior structure, θ = Xβ, provides an intuitive
and flexible lower dimensional representation for the inten-
sity process. This structure can incorporate both time-varying
and invariant covariates, as appropriate. An important special
case is the single location SEIR model with a single intensity
parameter. In our notation, such a model is constructed us-
ing just an intercept term in the linear predictor. Additional
examples of this structure are given in the case studies in
Section 5.

Specifying the parameter models for π(EI) and π(IR), intro-
duced in the temporal process model, is relatively straightfor-
ward given that the time spent in the latent and infectious pe-
riod may be reasonably modeled as a property of the pathogen
rather than the population for many diseases. As in Lekone
and Finkenstädt (2006), the set of E to I and I to R transition

probabilities, π
(EI)
i and π

(IR)
i are given by 1 − exp(−hiγ(EI))

and 1 − exp(−hiγ(IR)), respectively. In these expressions, γ(EI)

is the rate at which individuals transition to the infectious
from the exposed category, γ(IR) is the rate at which infec-
tious individuals are removed, and, as before, hi is a temporal
offset. In the interest of clarity, for the remainder of this work
we consider only the special case in which all of the {hi} are
equal to one, although the work is trivially adapted to the
inhomogeneous time case. This parameterization corresponds
to mean latent and infectious periods 1/γ(EI) and 1/γ(IR) re-
spectively, with exponentially distributed compartment mem-
bership time.

To ensure both flexibility and a proper range for the prob-
ability terms, independent gamma priors are placed on the
respective γ terms, parameterized by (α(EI), β(EI), α(IR), and
β(IR)). As the average latent and infectious periods are well
studied for many pathogens, we frequently have quite good in-
formation about their average values and range. The choice of
appropriately informative priors is therefore advised, and can
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be easily accomplished by comparing the resulting compart-
ment membership time to established ranges for a pathogen
of interest.

2.6. Implementation

These models may be implemented using standard Markov
chain Monte Carlo techniques, and in particular are well
suited to Metropolis–Hastings and slice sampling. On the
other hand, the large latent space and rich parameteriza-
tion often result in high autocorrelation among samples. Dur-
ing the development of this work, which involved the cre-
ation of the open source libSpatialSEIR software package,
we had success in autocorrelation reduction using a combi-
nation of tailored proposal distributions, decorrelation steps
(Graves et al., 2011), and alternating joint sampling tech-
niques (Brown, 2014).

3. The Basic Reproductive Number and
Associated Quantities

3.1. Introduction

Consider the simplest special case of the preceding compart-
mental framework: a single location stochastic SEIR model
with a single intensity parameter. The T × 1 intensity process
covariate matrix for this model, X, consists of all ones, and
has an associated scalar regression parameter β. The basic re-
productive number for this model has been shown to be equal
to the simple expression: eβ/γ(IR) (Lekone and Finkenstädt,
2006; Jones, 2007). This quantity makes intuitive sense, for
in the notation used here, eβ captures the infection rate, which
combines the contact behavior and infectivity of the pathogen,
while 1/γ(IR) gives the average number of time units during
which a person remains infectious.

Nevertheless, there are problems with this common ap-
proach. When generalized to more richly parameterized in-
tensity processes, this derivation requires either the choice of
a meaningful “baseline,” or the calculation of many differ-
ent context specific reproductive numbers. The intervention
model of Lekone and Finkenstädt (2006), for example, es-
timates a baseline intensity parameter followed by a linear
time component beginning on the date a significant interven-
tion was launched. Such an approach (called by the authors
R0(t)) has the benefit of not necessarily requiring a baseline
or reducing complex behavior to a single number, but can still
have odd consequences in real-world scenarios. For example,
if a government quarantine goes into effect at time ta, and is
modeled by the indicator 1ti>ta , i = 0, ..., T , an individual in-
fected at time ta−1 may have a drastically different estimated
R0(t) than a patient infected at time ta+1, even though the
vast majority of the first patient’s infectious period will be
spent under the quarantine. Conversely, should epidemic in-
tensity worsen unexpectedly, reproductive number estimates
at time periods immediately preceding the intensification will
be artificially low. Note that R0 is a single parameter special
case of R0(t). We use both terms, depending on whether the
emphasis is temporal or conceptual.

Another generalization used by the authors is the “effective
reproductive number,” which is simply R0(t) scaled by the
proportion of susceptibles in a population. Such a measure
might provide improved estimates for shrinking susceptible

populations, but does not include the estimated infection size,
and so only partially adapts to the population under study.

In the event that important covariates are unknown to the
modeler (for example: unobserved changes in disease aware-
ness in the population) none of these reproductive number
estimates are capable of overcoming underspecification of the
intensity process. To a greater or lesser degree, all are depen-
dent on its parametric form. As we will demonstrate, this can
result in heavily biased and obviously unreasonable estimates.
Thus, while such definitions certainly serve a useful purpose,
they are necessarily removed from the underlying estimated
disease dynamics. We propose a more flexible estimate of the
reproductive rate.

3.2. The Empirically Adjusted Reproductive Number

To define a measure of the reproductive rate in an actual
population, we need only consider the expected number of
secondary infections produced by a single infected individual
in that population. Fortunately, this quantity has a natural
and intuitive representation in the stochastic spatial SEIR
framework.

Note that the average number of infections caused by a sin-
gle individual from a given location at a particular time point
is simply the total number of such infections divided by the
number of infectious individuals. In the event that there are
no infectious individuals, the average number of secondary
infections is defined to be zero. Let the indicator Ik(ti, sj, sl)
denote the event that a person k from spatial location sj is
infected at time ti by contact from within spatial location sl,
and note that P(Ik(ti, sj, sl)) = 0 unless person k is a mem-
ber of the susceptible class S. The expected number of such
infections is then

E
[ Nij∑

k=0

(Ik(ti, sj, sl))
] = Sij · P(Ik(ti, sj, sl)|k ∈ S)

and the average per infectious individual at (ti, sj) is just
Sij ·P(Ik(ti,sj ,sl)|k∈S)

Iij
. In the single distance metric case, the asso-

ciated contribution to the overall probability π
(SE)
ij has a very

simple form: P(Ik(ti, sj, sl)|k ∈ S) = 1 − exp
{−f (djl)δile

θil

}
.

The general case, for which we must consider the contri-
bution from each distance metric, can be written as 1 −
exp

(−∑Z

z=1
ρz {Dz}jl · ηil

)
, where ηil = δile

θil . As before, the
contact events are considered independent and the {Dz} de-
fine the set of distance matrices.

These components, which capture the spatial structure of
expected secondary infections, can be arranged into a matrix
which is a single time unit analogue of the n × n “next gen-
eration matrix” G(ti) (Allen and van den Driessche, 2008).
Expressions for the elements, Gjl(ti), of these matrices are
given by pre-multiplying the expressions for the single and
multiple metric cases by the ratio,

Sij

Iil
.

The usual next step in this approach to basic reproductive
number estimation is to calculate the dominant eigenvalue,
or spectral radius, of the next generation matrix (Allen and
van den Driessche, 2008). However, more information can
often be gleaned from careful examination of the row sums
of the constructed matrix, which give the average number
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of infections caused by each infectious individual in the
spatial location with the same index at that time point. To
generalize this result to the lifetime of the pathogen, we
compute the expected total number of such infections over

time:
∑t∞

t=ti
G(t) ·

[∏t

k=tj+1
(1 − π

(IR)
k )

]
.

While R(EA) applies to the study population rather than
a hypothetical susceptible population, a similar threshold-
ing argument to that used for R0 applies. In the language
of Heffernan et al. (2005), if R(EA) is greater than one, the
pathogen is expected to further colonize the population un-
der study, while the opposite is true for R(EA) less than one.

3.3. R0 as a Special Case

Consider the derived expression for R(EA)(t) applied to an
approximation of the hypothetical population evoked by R0.
That is, consider a single spatial unit with a fixed size pop-
ulation of susceptibles at the time ti when a single infectious
individual is introduced. Note that, in this case, St ≈ N ∀ t. If
we restrict our attention to the simple single parameter inten-
sity function and assume equally spaced temporal intervals,
an interesting result may be obtained by letting the popula-
tion size become arbitrarily large (N → ∞). In this setting,
the expression for R(EA)can be shown to converge to eθ/π(IR)

(Web Appendix 1.2).
Therefore, by imposing the aforementioned constraints on

the infection events and reintroducing the hypothetical popu-
lation employed by R0, we find that R(EA) is analogous to the
traditional R0 estimate with 1/γ(IR), the average infectious
period based on an exponential time assumption, replaced by
1/π(IR), the average infectious period implied by the constant
transition probability (geometric). This correspondence pro-
vides an insight into some of the information which is lost in
the traditional approach. In particular, R0(t) ignores the non-
linear effect on the contact rate of the number of infectious
individuals.

3.4. Estimation

The formulation of the empirically adjusted reproductive
number allows sampling via MCMC algorithms, but invites
the question of how to perform the requisite infinite sum-
mation in practice. Fortunately, in realistic epidemics, the

pathogen lifespan weighting term,
∏t

k=tj+1
(1 − π

(IR)
k ), will

quickly and monotonically approach zero. In other words, pa-
tients are assumed to cease being infectious in finite time with
probability one. Therefore, we may perform the summation
forward in time until the probability of a person remaining in-
fectious drops below a reasonable threshold. At the end of the
study period, one can simply re-use the final available term,
or employ estimates based on predicted values.

4. Methods

4.1. Case Study: 1995 Ebola Outbreak in Kikwit

Kikwit is a large city in the Bandundu region of the Congo
which was the epicenter of an Ebola outbreak in 1995 (Chowell
et al., 2004). There were a total of 316 documented cases of
Ebola Virus Disease (EVD) between March and July of that
year, and the epidemic has been well studied in the time since.

This data set encompasses a single location, and the canon-
ical analysis employs a simple intensity process which incor-

porates an intercept up to the date on which intervention ef-
forts began, and adds a linear temporal term after that date
(Lekone and Finkenstädt, 2006). In order to examine the be-
havior of R0, effective R0, and R(EA), we first perform this
standard analysis and then examine an underspecified version
incorporating only an intercept.

The original study fixed the E to I and I to R transition pa-
rameters at 1/5 and 1/7 respectively, while we set their prior
mean equal to these values with high precision (1000 equiv-
alent samples). In addition, the authors model the intensity
intercept on the log scale relative to our linear predictor ap-
proach. We therefore employ a Gaussian, rather than gamma
prior structure to ensure it has a properly signed contribution
to the intensity process.

Three MCMC samplers were started from random param-
eter values and samples were drawn until convergence. This
was established by requiring that the Gelman and Rubin di-
agnostic (Gelman and Rubin, 1992) was less than or equal to
1.02 for all model parameters.

4.2. Case Study: 2014 Ebola Outbreak in West Africa

The 2014 and 2015 West African Ebola epidemic has captured
international attention for its unprecedented size and duration
as well as the sheer scope of the human tragedy. While a small
number of cases have been transported to or contracted in
Nigeria, Mali, the United States, Senegal and Spain, the core
of epidemic activity has been the three neighboring nations of
Guinea, Liberia, and Sierra Leone. The first recorded case was
observed in Guinea in December 2013, though the epidemic
began to more rapidly spread in March and April of 2014
(Frieden et al., 2014). As such, our analyses were restricted
to the three countries most affected by the epidemic: Guinea,
Liberia, and Sierra Leone.

Unlike the single location analysis, this epidemic is still un-
derway at the time of manuscript preparation and thus does
not have the benefit of hindsight in evaluating interventions
or knowledge of the time disease spread will conclude. More-
over, local public health infrastructure has proven inadequate
to contain, let alone defeat, the epidemic (Fauchi, 2014). This
environment has produced incredible challenges for national
and international organizations tasked with fighting the dis-
ease, and as a result has complicated modeling efforts due
to the difficulty of obtaining reliable data (Farrar and Piot,
2014). Despite these challenges, the situation provides a rigor-
ous test of analysis techniques. In particular, we focus on re-
productive number estimation in the face of uncertainty both
in terms of actual infection counts and the proper parametric
form of the intensity process; while information exists on in-
tervention efforts, we have found no complete and thorough
accounting of all such active programs with sufficient spatial
and temporal resolution to construct such a model.

Incidence data is available from the World Health Or-
ganization’s situation report publications, and is modeled
under overdispersion to partially account for the uncertainty
involved. The original data aggregation was performed by a
community of volunteers using the GitHub social coding site
(Rivers et al., 2014); online collaboration and rapid data an-
alytics have been persistent features of this epidemic. Due to
the uneven temporal availability of incidence reports between
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Figure 1. 1995 Ebola outbreak in Kikwit: cases and model-based reproductive numbers.

countries, these data required further processing prior to use
in the spatial SEIR framework described above. Records were
aggregated to ensure that a minimum of one week passed
between incidence reports. This had the additional effect of
smoothing some of the observed short term variability in
new cases. Given the limited and changing availability of
treatment beds, the potentially shifting geographic reach of
surveillance teams, and the internationally coordinated data
collection efforts, this short term variability could plausibly
reflect surveillance patterns more than actual changes in
transmission.

We begin this set of analyses by invoking a simple intercept
model in which each of the three nations is assumed to have
a separate, constant, intensity value. This simple structure
is compared to several expanded versions which include tem-
poral basis splines of varying degrees of freedom, produced
with the splines R package (R Core Team, 2013). This ap-
proach allows us to construct flexible models in the absence of
structural information about the Ebola epidemic which would
otherwise help inform the intensity process, such as finer spa-
tiotemporal indexing, data on funerals, and comprehensive
data on public health efforts, among other things.

Each set of nations was given a separate spatial autocor-
relation parameter to examine potential differences in cross-
border spread. In our experience, especially in the simple in-
tercept case, such a flexible spatial process may cause pa-
rameter identifiability issues if the elements of ρ are given
flat priors and the β parameters are given mean zero normal
priors; a pair of nations with similar average intensity param-
eters may trade spatial correlation for local intensity. This
behavior is easily addressed by placing a beta prior on the
spatial autocorrelation parameters, ρ, which restricts them to
a reasonable range.

4.3. Simulation

Examination of the behavior of the empirically adjusted re-
productive number under simulation is not so straightforward
as it may initially appear. The underlying quantity we wish
to estimate is the true number of secondary infections in a
particular context, however data simulated from the popula-
tion averaged models described above only permits the cal-
culation of the expected value of such counts. Our simulation
work thus falls into two categories: agent based simulations
comparing the ability of R(EA) , R0(t), and effective R0(t) to
estimate the true number of context specific secondary infec-
tions under correct and misspecified intensity processes, and
population averaged simulations concerning the estimation of
the expected counts. We also consider R(EA) as an approxi-
mation of R0(t). We find that our method provides improved
estimation of the true number of secondary infections, and
can be profitably compared to traditional reproductive num-
ber estimates. These simulations are described in detail in
Web Appendix 2, where results are also presented.

5. Results

5.1. Case Study: 1995 Ebola Outbreak in Kikwit

Figure 1 illustrates basic and empirically adjusted reproduc-
tive number curves for both reasonable and underspecified in-
tensity processes. In the rightmost graphs, corresponding to
the intervention model, note that both measures follow a sim-
ilar trajectory. No comparable graphic is available in Lekone
and Finkenstädt (2006), although the associated R0 estimates
are similar and well within the given credible intervals. Effec-
tive R0 is not shown, being entirely indistinguishable from
R0(t) as Si

N
≈ 1 ∀ i.
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Figure 2. 2014 Ebola outbreak in West Africa: estimated infections per day.

More interestingly, the leftmost graphs demonstrate both
the difference between these measures in underspecified mod-
els and the sensitivity of R0 estimation to the intensity pro-
cess. The measure of R0(t) is, naturally, completely linear as
it is a reflection of the parametric form of the intensity process
(i.e., an intercept). Moreover, we see that it is clearly biased
downward; the literature is in agreement that R0 for this epi-
demic was between 1.36 and 1.83 (Lekone and Finkenstädt,
2006).

R(EA) here distinguishes itself by shrinking toward zero af-
ter the intervention date, even though no intervention in-
formation was incorporated into the model. Of course, this
method does not completely recover the reproductive trend
given by the standard parameterization, but as discrepancy
between the oversimplified model and the underlying disease
dynamics widens, the measure is increasingly shrunk toward
the true value. We again observe that the entire curve is still
negatively biased, though to a lesser degree than the tradi-
tional measure.

Most interesting, perhaps, is the difference between the two
measures. Such deviation indicates, as observed under simula-
tion, that the observed epidemic behavior and the form of the
intensity differ, and should indicate to a modeler that impor-
tant factors in the disease intensity process are not accounted
for. This is especially useful given that both measures can be
estimated as part of the usual model fitting process.

5.2. Case Study: 2014 Ebola Outbreak in West Africa

Examining the new case counts in Figure 2, we see that the
temporal trend is not so obvious as in the earlier epidemic. In
Web Appendix 2, comparisons of R(EA)(t) and R0(t) curves
are presented for models with zero (intercept only), three,
and five degree of freedom cubic basis splines incorporated
into their intensity processes. Based on our previous observa-
tion that well specified models tend to exhibit reproductive
curves of similar shape, we conclude that the three degree of
freedom spline basis strikes the best balance between model
fit and parsimony. Clearly, additional work remains to quan-
tify and characterize such a selection procedure, however the
comparison remains valuable in the face of uncertainty.

Posterior quantiles for the selected final model are avail-
able in Web Appendix 2, though a few key features are noted
here. Although there is some overlap in the posterior credible
regions for the three country specific intercepts, Sierra Leone
had the highest median epidemic potential, followed closely by
Liberia. Guinea had a substantially lower estimated intensity
intercept. Interpretation of the three temporal basis param-
eters is not so straightforward, though only the last had a
95% credible region which did not include zero. Illustration
of the values of these components over time is also available
in the Web Appendix, both for estimation and prediction.
Interpretation of credible regions for predicted quantities is
complicated by the arbitrary nature of basis splines; we have
not quantified our considerable uncertainty about their func-
tional form.

The three included spatial parameters capture contact be-
tween Guinea and Liberia, Guinea and Sierra Leone, and
Liberia and Sierra Leone, respectively. All three parameters
are distinctly nonzero, however, the border between Liberia
and Sierra Leone had by far the highest estimated contact
rate: two times higher than the other two borders. Given
this observed heterogeneity, future research might explore an
asymmetrical contact specification to examine the effect of
any net population flows between countries.

Beyond parameter estimation, epidemic prediction is of
great interest. To this end, one may run the simulation for-
ward in time for as long as desired for each converged MCMC
sample. Of course, longer term predictions are subject to ad-
ditional uncertainty, which may not be fully accounted for
in the absence of scientifically motivated intensity functions.
Presented in Figure 3 are the predictions for the final selected
model. Confidence bands have been omitted for clarity, and
because they do not reflect our uncertainty about the form
of the intensity process. Interpretation of the results must be
cautious. In this case, we consider the result to provide weak
evidence, as of January 2015, that the epidemic would con-
tinue to slow until it is containment in April or May of 2015.
Subsequent analysis in April 2015 largely agreed with this
trajectory, although different dynamics appear to have taken
over as cases diminished (Web Appendix 2). While we lack
the data to investigate such a possibility formally, this shift
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Figure 3. Long-term infectious count predictions for the 2014 outbreak: three degree of freedom model.

could plausably be attributed to unmodeled heterogeneity at
a fine spatial scale.

6. Conclusions

Both R(EA) and R0(t) are intuitive quantities which capture
the infectious behavior of pathogens. We have demonstrated
that the conceptual differences, which include the applicable
population and the approach to defining the average num-
ber of secondary infections, produce quite distinct behavior
in practice. Moreover, we have demonstrated that this dis-
tinction can be used to motivate, albeit informally, model
selection efforts. Based on this work, it is our opinion that
traditional reproductive measures in stochastic compartmen-
tal models should not be applied and interpreted without first
comparing their behavior with this, more flexible, measure.
This is particularly important given the observed tendency
for underspecified intensity processes to result in unreason-
able reproductive number estimates.

One of the primary applications of reproductive number
estimation is the ability to at least partially address the ques-
tion of whether a particular disease may invade an, as yet,
unaffected population. With this in mind, some might be con-
cerned that our empirically adjusted approach loses some of
this generalizability. While it is certainly true that R(EA) does
not immediately provide a scalar summary quantity like R0,
it is worth remembering that the basis for R0 estimation is
the intensity process—a construct which addresses the con-
founded behavior of pathogen infectivity and population mix-
ing. Generalizing such a measure requires careful expert input
in any case, as population mixing behaviors may differ dra-
matically from region to region. Moreover, we have seen that
incautious use of such a simplified measure may give very
misleading results.

More work remains to characterize summary methods
which may be applied to R(EA), as well as to formalize the
model selection process motivated by the parameter. Never-
theless, the utility of this method is clear, both as a realistic
estimate of epidemic reproductive behavior and as a counter-
point to traditional methods.

7. Supplementary Materials

Web Appendices 1.1, 1.2, and 2, referenced in Sections 2, 3,
and 5, respectively, in addition to a companion R package and
collection of scripts implementing all included analyses and
simulations, are available with this article at the Biometrics
website on Wiley Online Library. All referenced data are also
included.
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