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Abstract

Approximate Bayesian Computation (ABC) provides an attractive approach to estimation in 

complex Bayesian inferential problems for which evaluation of the kernel of the posterior 

distribution is impossible or computationally expensive. These highly parallelizable techniques 

have been successfully applied to many fields, particularly in cases where more traditional 

approaches such as Markov chain Monte Carlo (MCMC) are impractical. In this work, we 

demonstrate the application of approximate Bayesian inference to spatially heterogeneous 

Susceptible-Exposed-Infectious-Removed (SEIR) stochastic epidemic models. These models have 

a tractable posterior distribution, however MCMC techniques nevertheless become 

computationally infeasible for moderately sized problems. We discuss the practical 

implementation of these techniques via the open source ABSEIR package for R. The performance 

of ABC relative to traditional MCMC methods in a small problem is explored under simulation, as 

well as in the spatially heterogeneous context of the 2014 epidemic of Chikungunya in the 

Americas.

1. Introduction

The study of epidemics is complicated by the fact that real human populations exhibit 

complex structure and interact in subtle ways over both space and time. Nevertheless, in an 

increasingly globalized world, the ability to model pathogen outbreaks, predict ongoing 

spread, and evaluate interventions represents crucial abilities of public health practitioners. 

In this work we present a class of algorithms and statistical framework ideally suited to meet 

this need, in addition to a discussion of our open source software, AB-SEIR, which 

implements them.
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1.1. Approximate Bayesian Computation

Approximate Bayesian Computing is generally attributed to the work of Rubin (1980), 

which concerns interpretation and implementation of practical modeling techniques for 

applied Bayesian statisticians. Among other contributions, this work introduced one of the 

most commonly used algorithmic approaches to ABC: the rejection algorithm. This 

procedure provides an intuitive introduction to approximate Bayesian computing techniques. 

We therefore begin our approach to the subject by introducing the requisite notation, and 

describing the basic ABC rejection algorithm.

Define a p × 1 parameter vector θ with p dimensional parameter space Θ and prior 

distribution πΘ(θ). Further define an N × 1 vector of observed data, y, with a likelihood or 

data generating distribution denoted by fY(y|θ). Finally, define a distance function (such as 

the Euclidean distance) between appropriately sized vectors x and y: ρ(y, x). As a Bayesian 

sampling technique, the goal of ABC is to make inference about the posterior distribution, 

fΘ(θ|Y) ∝ fY(y|θ)πΘ(θ).

The general pattern of rejection sampling ABC is quite simple. We first generate repeated 

samples θi from the prior distribution for θ. Each of these samples, indexed by i, is in turn 

used to generate a replicate data set xi from the likelihood. Parameters which generate 

replicate data sets which are sufficiently ‘close’ to the observed data y, according to the 

distance function ρ and a tolerance ε, are retained, while the rest are discarded. Details of 

this procedure are given in Algorithm 1.

Note that this approach does not require the user to evaluate the potentially expensive or 

unavailable likelihood function, but does require the ability to draw samples from it (Rubin, 

1980; Beaumont, 2010). In its original formulation, the tolerance, ε, was taken to be zero 

(Rubin, 1980). The key insight of the rejection approach is clear in this context: accepting 

only parameters which produce replicate data identical to the observed response is 

equivalent to conditioning on that observed data. The distribution of parameter values 

conditional on the observed data is the posterior distribution: our inferential target. The most 

commonly applied version of the algorithm, however, generally includes the aforementioned 

nonzero tolerance, and employs a distance measure which depends only on a set of summary 

statistics of x and y, thus rendering the inference ‘approximate’.

Algorithm 1

ABC Rejection Algorithm

Require: Define a tolerance ε > 0, and let ‘←’ denote assignment

1: for i ← 1 to n do

2:  d ← ∞

3:  while d > ε do

4:   draw θi ~ π(Θ)

5:   draw xi ~ fY(y|θ)i

6:   d ← ρ(y, xi)
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1.2. Sequential Algorithms

Numerous improvements and extensions have been proposed to this basic algorithm, 

generally focusing on obtaining increased sampling efficiency. In particular, many authors 

note that sampling performance can be extremely poor in situations where prior distributions 

on the parameter vector θ are diffuse with respect to the posterior distribution, especially for 

high dimensional problems (Beaumont et al., 2009; Beaumont, 2010; Blum and François, 

2010; Del Moral et al., 2012; Neal and Huang, 2015; Sisson et al., 2007). Sun et al. (2015) 

apply several such improvements in the context of non-spatial deterministic and stochastic 

compartmental epidemic models. Here we emphasize a single algorithm, though the 

software described in later sections is the focus of ongoing research in this area. We 

implement a slightly modified version of the sequential Monte Carlo algorithm proposed by 

Beaumont et al. (2009), which we find both intuitive and effective. As with the rejection 

algorithm, Beaumont et al. (2009) begin by drawing proposed parameters from their prior 

distribution. Instead of repeating this step, however, subsequent sets of parameters are re-

sampled and then perturbed from previously accepted values according to a set of weights. 

Data is then simulated as before, and parameters are accepted according to a decreasing 

sequence of ε values. Weights are updated using an importance sampling step to preserve the 

target posterior distribution. This approach can provide dramatic efficiency gains over the 

rejection algorithm.

Our adaptation of this algorithm introduces four primary modifications. First, we employ a 

batch size, N ≥ n, over which simulations and distance evaluations may be conducted in 

parallel with no need for communication between nodes. This is important, because even 

with the sequential parameter updates, acceptances can become quite rare as ε decreases. 

Second, we permit the first iteration to employ a larger batch size than subsequent sequential 

step. This ensures that the algorithm starts at a practical ε, rather than spending too much 

time at unnecessarily permissive tolerances. Third, we implement a specific ε schedule: εt+1 

= cεt, where 0 < c ≤ 1. This obviates the need for investigators to manually specify a 

sequence of ε values, a process which depends on the scale of observed values as well as the 

chosen set of prior distributions. Finally, we generalize the perturbation kernel to permit a 

multivariate Gaussian distribution. For problems which exhibit correlation among the 

parameters, we have found the multivariate approach can be more efficient.

These modifications imply two potential modes of convergence, beyond specifying a 

required terminating ε value. First, the investigator may specify a desired number of 

sampling epochs. Second, users may choose to specify a maximum number of batches of 

size N which will execute for a particular value of ε before the sampler will simply return 

the current sample of n parameter values. This latter mode enables the algorithm to adapt the 

termination of the sequence of ε values to the difficulty of sampling by specifying a 

termination acceptance rate. This acceptance rate is generally chosen based on the 

computational resources available. Background on the development of sequential Monte 

Carlo ABC is available in Beaumont (2010).
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1.3. Model Selection in SMC-ABC

Beyond the ability to fit models which would be otherwise computationally infeasible, ABC 

techniques provide a natural way to compare the relative evidence for different models. 

Informally, sets of parameters and models which produce better simulated data are more 

probable than others. This can be used to compare a set of candidate models, and in fact the 

ratio of acceptance rates between two models is an estimate of the Bayes Factor comparing 

the two (Beaumont, 2010).

In the SMC-ABC context, however, such comparisons are a bit more problematic. Care must 

be taken to employ comparable instantiations of the algorithm. For example, comparison 

between non-converged and converged algorithm runs is obviously not reasonable, because 

the acceptance rates are not comparable.

With this in mind, we assume that the two models to be compared,  and  with prior 

probabilities π1 and π2, were either run to the same terminating minimum acceptance rate 

(i.e., arbitrarily large T, identical n, N), or were forced to run until the same ε threshold was 

reached. In this way, we ensure that the algorithm has the opportunity to overcome diffuse 

priors, while allowing users to avoid the potentially infeasible task of running a poor model 

to the same ε value as a reasonable one. Assuming that each of the the sequences of 

distributions has converged, we may employ the ratio of acceptance rates at the next iteration 

to estimate the Bayes Factor comparing the two models. Other model comparison criteria, 

such as the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), are often used 

in a Bayesian context. Models fit with ABC, however, do not generally rely on the form of 

the likelihood, and are therefore more naturally compared using Bayes Factors.

1.4. Spatial SEIR(S) Models

Compartmental epidemic models take many forms, and can be implemented using 

deterministic systems of ordinary and partial differential equations or stochastic difference 

equations. The approximate computational approach described here is applicable to general 

discrete time stochastic compartmental models, specifically in a Bayesian context. We focus 

on the important subset of compartmental epidemic models known as stochastic spatial 

SEIR models. A brief introduction to these techniques is provided here, and a more 

complete discussion of the spatial SEIR model class is available in Brown et al. (2015). 

Additional information on more general compartmental processes is available in the 

extensive compartmental modeling literature (Cook et al., 2007; Deardon et al., 2010; 

Hooten et al., 2011; Jewell et al., 2009; Kermack and McKendrick, 1927). More recently, 

King et al. (2016) have considered a much more general class of Partially Observed Markov 

Processes (POMP), which can considered to encompass spatial SEIR models. Their 

associated software implements a number of algorithmic approaches to inference in this 

setting, including ABC-SMC techniques. In contrast, our software is specific to spatial SEIR 

and SEIRS models, and is therefore optimized for the specification and fitting of these 

models in particular.

Stochastic spatial SEIR models track individuals in structured populations through four 

disease states: susceptible, exposed, infectious, and removed. Susceptible individuals are 
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capable of contracting a particular pathogen. Those who have done so are considered to have 

transitioned to the exposed category. Exposed individuals transition to the infectious 

compartment when they become capable of transmitting the infection, and subsequently to 

the removed compartment once the infection has run its course. Finally, for certain 

pathogens, it makes sense to assume that individuals may return to the susceptible 

population after immunity wanes. Of course, numerous variations of this framework exist in 

the literature, including models which separate the removed population by mortality/

immunity; these choices must ultimately reflect the nature of a particular pathogen of 

interest.

These compartments and associated transitions are defined over discrete time, ti : i = 1, …, 

T, and discrete space: sj : j = 1, …, n. Epidemic state information is therefore conveniently 

arranged into a set of T by n matrices: S, E, I, R, S∗, E∗, I∗, and R∗. In this notation, the 

first four matrices capture compartment membership counts, and the second four (with 

asterisks) capture transitions into each compartment. For example, [S]ij denotes the number 

of susceptible individuals in location sj at time ti, and [E∗]ij is the number of such 

individuals in the process of transitioning to the exposed compartment at the same time/

location. This approach gives rise to the intuitive set of difference equations and chain 

binomial structure given in (1).

(1)

The transition probabilities are labeled for the two compartments they link. For example, 

 gives the probability a susceptible individual in location sj at time ti will transition to 

the exposed population. This binomial approach is far from the only option for motivating 

the transition matrices, but does allow a natural and flexible hierarchical specification of the 

distribution of such quantities.

We consider the E to I transition, which captures the latent period of a pathogen, and the I to 

R transition, which captures the infectious duration, to be primarily properties of the 

pathogen, and therefore unlikely to vary substantially over space. We currently provide two 

models for these quantities, the exponential compartment membership model of Lekone and 

Finkenstädt (2006), and the path specific SEIR (PS-SEIR) structure of Porter and Oleson 

(2013, 2015).

The exponential model, presented in Equation 2, allows for irregularly spaced time points 

via the inclusion of a temporal offset (hi), but is otherwise rather inflexible. This 

specification corresponds to an exponentially or geometrically distributed compartment 

membership time, on the continuous and discrete timescale respectively (Brown et al., 

2015). These probability distributions are certainly mathematically convenient, but the 

implication that remaining compartment membership periods do not depend on the amount 
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of time already spent in a disease state is almost never true in practice. Nevertheless the use 

of constant transition probabilities often provides a reasonable fit, and provides 

computational benefits.

(2)

The PS SEIR structure (Porter and Oleson, 2013, 2015) allows for non-exponential latent 

and infectious times to be incorporated into a SEIR model with population level mixing. 

This more general transition model is easily adapted to the spatial SEIR framework 

described here by modifications to the latent and infectious period specifications. Consider 

defining E as a T by n by m1 array, where m1 is the maximum time an individual may 

remain in a latent state, and consider defining I as a T by n by m2 array, where m2 is the 

maximum time an individual may remain in an infectious state. We subscript our additional 

dimension by l, where l = 1, … , m1 for E and l = 1, …, m2 for I. Next, in (1), we replace

with

(3)

where  represents the (i, j) element of the transition matrix obtained by summing the 

exposure array over l = 1, …, m1 and  is defined similarly for the infectious array.

Those individuals who do not transition from one compartment to the next are handled via 

the diagonalization process (described in Porter and Oleson, 2013), by which we define
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The success of this technique depends on the judicious selection of Z1 and Z2. Wearing et al. 

(2005) suggests that a gamma distribution may be appropriate for many infectious diseases, 

while Porter and Oleson (2013) provides evidence that a Weibull distribution may be 

appropriate for some infectious diseases. ABSEIR allows users to specify arbitrary 

distributions for latent and infectious periods, allowing users to employ the best available 

experimental and surveillance based data on these transition processes. In addition to 

conditioning on these user specified distributions, we also allow users to employ fully 

parameterized Weibull membership times, with gamma hyperpriors. The software is also 

readily extensible to other parameterized distributions.

The remaining two transitions present additional important choices for the modeler, for the 

exposure and reinfection processes may be expected to vary over space and time. To capture 

the exposure process, we assume that each location has an epidemic intensity which varies 

throughout the epidemic. To structure this term, each location is associated with a T by p 
design matrix Xj such that the intensity time series for the location can be calculated as Xj 

βSE for the shared parameter vector βSE. Computationally, we find it convenient to 

concatenate each of these location specific design matrices row-wise into a single matrix 

XSE, and in one step compute the T by n intensity matrix η from the Tn by 1 column vector 

XSEβSE. The p parameters may be used to incorporate intercepts, demographic effects, 

intervention summaries, and innumerable other spatiotemporal variables. This provides a 

rich basis for model fitting and selection.

Before one may compute the final form of the exposure probability, it is necessary to specify 

the spatial structure of the population under study. As in Brown et al. (2015), we propose to 

specify such structure using a number of n×n ‘distance’ matrices, {Dz} and associated 

autocorrelation parameters {ρz}. The resulting parametric form is given in Equation 4, and 

additional discussion and motivation is available in the aforementioned manuscript.

(4)

The ABSEIR software also permits users to specify contact structures which vary over time, 

and which have a delayed contact effect. This functionality was primarily intended to 

capture the effects of environmental reservoirs and external influences on contact rates.

The propensity of some pathogens to confer only temporary immunity can be incorporated 

into the probability of transitioning from the R compartment to the S compartment, a 

reinfection process. While numerous potential parameterizations of this process exist, we 

currently consider only the case in which a temporally varying vector of probabilities is 

shared among all spatial units. We denote this n × l matrix X(RS), and associate it with l 
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parameters: {β(RS)}. The vector of reinfection probabilities is then given by 

These models generally require the inclusion of informative prior information concerning 

the duration of compartment membership time. Fortunately, for most infectious diseases 

there exists high quality information on the duration of these disease states; study of the 

duration of latent and infectious periods is commonplace. Other parameters are less 

straightforward to inform based on prior studies. These include spatial autocorrelation terms 

and linear predictor coefficients which drive the epidemic. While not generally the subject of 

truly informative priors, we can often place reasonable prior bounds on these terms; 

extremely large linear predictor coefficient values are improbable, for example, because they 

have unreasonable implications for epidemic behavior (e.g., the entire population becomes 

infected very quickly, or the epidemic dies out immediately). This will be explored via 

example.

1.5. ABC for Spatial SEIR Models

Stochastic spatial SEIR models are ideally suited to approximate Bayesian computation, for 

while the numerous unobserved compartment values cause the parameter space to grow 

rapidly in the number of location/time points, relatively few parameters are required to 

simulate such data. For this reason, ABC can be thought of as a dimension reduction 

strategy for such models. More formally, we partition the unknown parameters into two 

components: θ = [β(SE), β(RS), γ(EI), γ(IR), ρ], and ζ = [S, E, I, R, S∗, E∗, I∗, R∗]. No matter 

which compartment, transition matrix, or combination thereof the observed data y relates to, 

we may simulate it from the conditional distribution P (ζ|θ). The application of ABC to 

models in this class is thus quite straightforward; the observed data, Y, may be compared to 

any appropriate compartment, A, using a Euclidean distance metric as described in Equation 

5. Missing values at a particular time/location, (ti, sj), are dealt with using the indicator 

function Iobs(i, j), which is equal to one if Aij is observed.

While the point-wise euclidean distance is far from the only option for comparing simulated 

epidemics to observed data, it has a number of attractive properties. First, as evident from 

the included indicator function, such a metric naturally incorporates missing data. Second, 

this form applies to both cumulative and non-cumulative surveillance counts without 

modification. Finally, unlike simpler problems where observations are exchangeable, in 

simulations of spatial SEIR models, there exists a unique simulated value for each location-

time. This direct correspondance naturally invites a point-wise norm comparison, of which 

the Euclidean distance is an example.

(5)
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2. Software

The ABSEIR R package provides a user friendly interface for specifying models in the 

spatial SEIR(S) class. The software implements the aforementioned SMC-ABC algorithm 

with a variety of tunable parameters, and facilitates numerical and graphical summary of 

model results. Parallelism between simulations is achieved via the threading capabilities of 

modern C++. Implementing parallel simulations at the C++ level, as opposed to using 

process-level parallelism such as that provided by the ‘parallel’ R-pacage (R Core Team, 

2013), enables ABSEIR to distribute work between multiple cores with minimal overhead. 

This is important for SMC-ABC models, because while the work of simulating epidemics 

dwarfs the rest of the algorithmic computational cost, numerous iterations may still be 

required. Low level parallelism is particularly beneficial for the ability of software to control 

how memory is accessed and copied.

Models are specified by constructing a set of model components:

• DataModel: describes the relationship of the observed data to the epidemic 

quantity of interest

• ExposureModel: captures the exposure covariate structure XSE and specifies 

prior parameters for βSE

• ReinfectionModel: determines whether a model includes a reinfection 

process, and if so defines XRS and prior parameters for βRS

• DistanceModel: defines, for models incorporating more than one spatial 

location, the set of distance matrices {Dz} and prior distributions for the 

autocorrelation parameters {ρz}

• TransitionPriors: specifies a model for the E to I and I to R transitions using 

prior transition probabilities and associated effective sample sizes. The software 

also provides utility functions to assist in the creation of of exponential transition 

models, arbitrary distribution path-specific models, and fully parameterized 

Weibull path-specific transition models.

• InitialValues: provides S0, E0, I0, and R0, vectors of compartment 

membership counts at the beginning of the study period

• SamplingControl: indicates which algorithm is to be used in fitting the model, 

as well as values of the requisite tuning parameters

Additional detail, and complete examples, about all of these objects is available via the 

ABSEIR package documentation and vignettes. Upon creation of the required model 

components, samples from the posterior are drawn using the SpatialSEIRModel function, 

which is also documented on-line.

The creation of so many model components may seem cumbersome, but we find that this 

approach is more natural for this class of complex hierarchical models than calling functions 

with huge numbers of parameters. Moreover, this compartmentalization greatly facilitates 

the comparison of competing models, as shared components may simply be reused. An 
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important example of such reuse arises when comparing several candidate models. For 

example, when evaluating the evidence for an intervention effort, a user may simply create 

two different ExposureModel objects, with and without the intervention effect. Evidence in 

favor of the intervention model may subsequently be obtained using an approximate Bayes 

Factor computed by the compareModels function.

3. Methods

3.1. Simulation Studies

The spatial SEIR(S) model class described here is based on, and is a superset of, that 

employed in Brown et al. (2015), so the MCMC based libSpatialSEIR library used in that 

work provides the most natural point of comparison in terms of both in assessing the 

reasonableness of the approximations employed by ABSEIR as well as the gains in 

computational efficiency. We therefore begin by comparing the parameter estimates and 

required runtime for SEIR data simulated over a single spatial unit, based on the analysis of 

the 1995 outbreak of Ebola in the Democratic Republic of the Congo performed in the 

aforementioned manuscript as well as in Lekone and Finkenstädt (2006). Simulations run for 

150 time points from an initial state with 5,363,499 susceptible population members and 1 

infectious member.

Three sets of parameters are each used to generate replicate epidemics to be analyzed, and 

specific parameter values are given in Table 1. Average epidemic size is modified by varying 

the exposure process intercept term, , which modifies overall epidemic intensity. An 

intervention term,  is associated with a piecewise linear covariate, which is equal to 

zero up to time point 66, at which point it becomes linear in time. This model assumes that 

the contribution of the intervention term increases over time, analogous to the specification 

of Lekone and Finkenstädt (2006). Fifty epidemics are simulated for each of these parameter 

values, and each is analyzed using both the MCMC based libSpatialSEIR and ABC based 

ABSEIR libraries.

Of course, the exact posterior distribution is generally unavailable for spatial SEIRS models, 

so we must compare our approximate methods to converged MCMC chains. We examine 

marginal posterior coverage, interval width, and ‘bias’ when compared to parameter values 

used to simulate the data for epidemics of several sizes. Importantly,

3.2. Chikungunya

Upon establishing the performance and accuracy of our method and software, we next 

consider a considerably more complex problem as a demonstrative example: the spread of 

Chikungunya in the Americas during 2014. Chikungunya is a virus transmitted by 

mosquitoes and has origins in Africa and Southeast Asia. In recent years, the pathogen has 

been seen in the Caribbean, the Americas, and southern Europe (Khan et al., 2014; Leparc-

Goffart et al., 2014; Dumont and Tchuenche, 2012). The most common symptoms include 

fever and joint pain, and which can sometimes last for weeks or years (World Health 

Organization, 2015). The virus is spread by Ades aegypti and Ades albopictus mosquitos, 

and since 2013 has colonized much of the Caribbean (Leparc-Goffart et al., 2014; World 
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Health Organization, 2015). Local spread has been observed in Florida, and given the 

geographic range of the insect vectors, many experts continue to worry about increased 

spread throughout the southern United States (Mowatt and Jackson, 2014).

From a control perspective, Dumont and Tchuenche (2012) pursue mathematical models of 

the efficacy of sterile insect technique, expansion on the previous work of Dumont and 

Chiroleu (2010) which studied an outbreak on Réunion Island. Cauchemez et al. (2014) 

explore an invasion time model to similar data, choosing to model the probability that the 

virus would colonize particular areas of the Caribbean over time.

The data of interest is provided by the Pan American Health Organization and WHO in the 

form of weekly epidemiological reports of cumulative suspected and confirmed cases of 

Chikungunya in 55 PAHO administrative regions throughout 2014 and the beginning of 

2015 (PAHO and WHO, 2014). Data is available irregularly both spatially and temporally, 

and is contained in separate PDF tables by week. A Python script was employed to construct 

a readily analyzable case count data set, although irregular reporting remains a concern.

According to the CDC, the typical incubation/latent period for Chikungunya is between 3 

and 7 days, up to 12. This indicates a very high probability that an infected individual will 

become infectious by the beginning of the week after being exposed; a fact which is 

important given the weekly granularity of the available data. To encode this prior 

information, we chose to use an exponential transition process with an exposed-to-infectious 

rate term γ(EI) with a mean of 2.5 and effective prior sample size of 100. This implies 

approximately a 92% chance that an exposed individual will transition to infectious within 

the first week. The model is still free to modify γ(EI), but it would need to overcome the 

prior information. Less is known about the duration of the infectious period, so a much less 

informative prior was chosen. The prior distribution for γ(IR) was chosen to have mean 0.5 

and effective prior sample size of only 10. This implies a median transition time of one 

week, but permits much longer possible infectious durations should the model overcome the 

weak prior information to select a smaller γ(IR).

The exposure process parameters, β(SE) were assigned independent N(0, 1) prior 

distributions, because these distributions provide enough flexibility for the simulated 

epidemics to encompass the entire range of plausible epidemic, while avoiding placing 

substantial prior probability on extremes of epidemic behavior. Spatial autocorrelation terms 

were given Beta(1, 40) priors, which constrains the contribution arising from contact 

between nations to reflect less than 10% of the contact intensity occurring within nations, a 

conservative constraint.

With these prior specifications, we consider four candidate models, intended to illustrate 

some of the varying complexity which can be employed by this model class. In all cases, 

two distance matrices, denoted Dz in Equation 4, are employed. The first provides an overall 

contact process between all all administrative regions in the study. This matrix is a 55 × 55 

square matrix with  on the off diagonals and 0 along the diagonal. The second measure of 

distance between spatial locations is a gravity model, weighted based on squared distance 
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between administrative region centroids and relative population sizes. Specifically, the 

geodesic distance δij is computed between region centroids for location i and location j. The 

distance metric is then computed as , where ni, nj denote the population sizes in each 

region. The resulting matrix is then rescaled by its maximum value to ensure that no element 

is greater than 1, matching the scale of the prior distribution of the autocorrelation 

parameters.

Temporal variability is captured using natural splines with varying degrees of freedom, and 

it is this process that is used to differentiate the candidate models. Three of the models 

employ a categorical variable based on population size rather than on overall intercept. 

These models also include an interaction between the population factor and the spline basis, 

permitting separate temporal intensities by population size. The overall intercept model 

assumes that epidemic intensity is homogeneous between spatial locations, even though 

contact between locations may not be. The population factor model allows intensity to vary 

spatiotemporally, in addition to permitting the same spatial contact process. Clearly, these 

models are relatvely artificial, and a more comprehensive study could include information 

on demographics, environmental influences, and human behavior such as travel rates and 

economic dependence. Nevertheless, the inclusion of temporal bases of varying complexity 

allows investigators without access to such information to determine the relative complexity 

of the underlying population dynamics (Brown et al., 2015). Even these relatively generic 

models permit researchers to quantify reproductive behavior in each location. The model 

indices are described in Table 5.

We begin the evaluation of the adequacy of the four included models by examining the 

approximate Bayes Factors in favor of each, assuming that each had equal prior probability. 

We additionally consider the posterior predictive distributions of the final selected model 

and the least preferred model, and visualize two example locations for empirically adjusted 

reproductive number trends (Brown et al., 2015). Finally, we illustrate the average 

reproductive number trend across all locations.

This complex epidemic and the aforementioned irregular data availability provide an ideal 

test bed for the construction of new models of the spread of Chikungunya. In particular, this 

example highlights the ability of such techniques in general, and our software in particular, 

to deal with both cumulative and non-cumulative data, missing data, and to compare models 

of competing complexity in order to evaluate the dominant factors driving epidemic spread. 

Due to the large number of spatial locations, no comparison to MCMC techniques was 

feasiblez.

4. Results

4.1. Simulation Studies

In Tables 2 and 3, we compare posterior coverage and bias between MCMC and ABC 

techniques, respectively. Both coverage and bias are within reasonable limits, especially in 

light of the dramatic difference in required computation time, presented in Table 4. 

Interestingly, larger epidemics are associated with improved performace for the ABC 
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algorithm, however this observation is based on a single shared terminating acceptance rate. 

Other compromises between computation time and accepted bias/coverage performance are 

possible through the choice of different algorithm tuning parameters. Moreover, even for 

these small epidemics, examination of the posterior and posterior predictive distributions of 

compartment values compared to the true data indicates that meaningful epidemic patterns 

are being learned (Figure 1).

4.2. Chikungunya

The raw case counts, as reported by PAHO and processed by our team, are illustrated in 

Figure 2. In this graphic, rows of the image correspond to individual administrative regions, 

sorted by cumulative cases over the course of the study. Columns correspond to PAHO 

epidemiological weeks spanning 2014 and early 2015. As this figure clearly illustrates, 

updates to estimated cases are quite sparse, even in heavily affected regions. The ability to 

seamlessly and appropriately deal with missing data is thus seen to be quite useful in 

practice.

All four models were fit to a stringent terminating acceptance rate of 250 accepted particles 

per 4M epidemic simulations. The resulting approximate Bayes factors are presented in 

Table 6. Only model 3, which incorporates a six degree of freedom temporal basis and the 

simpler of the two spatial components, had factors uniformly greater than one, and strongly 

so. The reason for this strong preference becomes apparent when examining the posterior 

predictive distributions.

Figure 3 presents posterior predictive distributions cases determined by Model 4 

(underspecified) in two of the regions with the largest incidence: The Dominican Republic 

and Colombia. In this example, the posterior predictive distribution demonstrates a very poor 

fit in the dominican republic, and an acceptable one in Colombia. In contrast, the final 

accepted model illustrated by Figure 4 illustrates a much more reasonable distribution for 

both. This predictive distribution is, in fact, the epidemic proposal distribution. Clearly, the 

latter model produces epidemics which match the observed data far more frequently.

Even so, the fit is far from perfect. This indicates that our set of candidate models is 

probably not sufficiently flexible to capture diverse epidemic behavior throughout this 

heterogeneous region. In particular, while nations which are similar in size may have 

epidemic features in common, this is likely to be geographically heterogeneous. This issue 

could be avoided with better temporal and location specific covariates, such as drivers of 

mosquito population growth. Additionally, improved drivers of spatial contact of human 

populations such as airline and nautical traffic may be of interest, as the weighted gravity 

model appears to have little support. Even so, these simple models are a reasonable way to 

characterize pathogen reproductive behavior.

Empirically adjusted reproductive number curves (Brown et al., 2015) are presented for 

these two locations in Figure 5, and mean EA-RN trends for all locations in 6. The observed 

heterogeneity highlight the substantial difference in baseline epidemic intensity which is 

observed throughout the region.
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5. Discussion

We have demonstrated that approximate Bayesian computing techniques have strong 

application in the world of compartmental epidemic models, both to expand the scope of 

problems to which existing techniques may be applied, and to push the methodological 

boundaries of compartmental model specification. The ease with which competing models 

may be compared further illustrates the range of potential uses of these techniques.

The ability to fit and compare numerous models of complex epidemic processes 

dramatically improves on our previous work in this domain. In particular, we feel that the 

comparison of candidate spatial and single location models for the Chikungunya epidemic 

highlights the need for improved environmental, demographic, and behavioral explanatory 

information about the problem. We hope that the general tools and techniques highlighted by 

this work encourage others with access to such data to continue to expand investigations of 

nuanced epidemic models, and will continue to study this important public health issue in 

the future.

Despite the obvious utility of these methods and software, there are a number of avenues for 

further improvement. First, given the highly parallel nature of these problems, we hope in 

the future to extend this software to heterogeneous computing architectures. In particular, 

modern graphics processing units (GPUs) present a cost effective tool for massively parallel 

problems (Scarpino, 2012). Moreover, recent and ongoing improvements in heterogeneous 

computing frameworks provide a rich landscape which would benefit from better integration 

with the R statistical computing environment (Lutz, 2014; The Khronos Group, 2015).

Second, the SEIR(S) compartment structure, while flexible, does not accommodate all 

pathogens and disease processes. Indeed, many infectious disease problems represent a 

complex interplay of multiple host and vector species, and may involve important disease 

states not captured by traditional techniques. With this need in mind, we hope to apply the 

techniques developed here to generic compartmental modeling software in the future, while 

retaining the high level nature of model specification in ABSEIR.

Finally, numerous extensions and improvements to our example analysis of Chikungunya 

data are possible. In particular, better information about the human dynamics of travel in the 

region would be useful in informing mitigation strategies. Nevertheless, we feel that the set 

of tools provided by ABSEIR will encourage and enable such investigation by 

Biostatisticians and Epidemiologists studying the problem.
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Figure 1. 
Posterior and Posterior Predictive Distributions for Infectious Count
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Figure 2. 
Reported Cumulative Chikungunya Cases by Administrative Region and Epidemiological 

Week
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Figure 3. 
Underspecified Posterior Predictive Distribution: Cases for The Dominican Republic and 

Colombia
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Figure 4. 
Final Posterior Predictive Distribution: Cases for The Dominican Republic and Colombia
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Figure 5. 
Reproductive Numbers: The Dominican Republic and Colombia
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Figure 6. 
Reproductive Numbers: Mean National Reproductive Number Trends
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Table 1

Single Location SEIR - MCMC Parameter Estimation Performance

γ(EI) γ(IR)

θ1 −1.4 −0.055 5 7

θ2 −1.2 −0.055 5 7

θ3 −1.0 −0.055 5 7
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Table 5

Chikungunya Analyses - Model Indices

Model Index Description

1 Population-factor, 3 DF Temporal Basis

2 Population-factor, 4 DF Temporal Basis

3 Population-factor, 6 DF Temporal Basis

4 Single Intercept, 3 DF Temporal Basis
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Table 6

Chikungunya Analyses - Approximate Bayes Factors (row vs. column index)

1 2 3 4

1 1.0 Inf 0.07 Inf

2 1.2 1.0 0.7 3.4

3 15.21 Inf 1.0 Inf

4 0.0 0.3 0.2 1.0
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