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M ANY organizations require the assessment of clini-
cal performance metrics although the value of many 

such metrics remains unknown. Such metrics might be used 
to evaluate the “quality” of care provided by an individual, 
assuming that a provider who is identified by such a metric is 
delivering “lesser quality care” than peers. However, the care-
less selection and analysis of any given metric may result in 
individuals being inappropriately labeled as outliers or may 
result in wasted operational cost.

One proposed metric relevant to both individual “qual-
ity” and organizational operations is the incidence of “pro-
longed” time to endotracheal extubation, which refers 
to those extubations that occur 15 min or later after the 
placement of the dressing on the patient.1–3 They can be 
measured accurately by both prospective observations in 
operating rooms (ORs) and retrospectively from anesthesia 
information management system (AIMS) data.1,2 There are 

both clinical and operational reasons for selecting prolonged 
times to extubation as a potentially meaningful metric:

What We Already Know about This Topic

•	 Monitoring the incidence of prolonged time to extubation 
(15 min or longer after dressing applied), a performance metric 
for anesthesiologists, may be used to identify outliers, provide 
education, and increase operating room workflow

What This Article Tells Us That Is New

•	 In a review of over 27,000 anesthetics in a university practice, 
approximately 20% of extubations were prolonged, with 95% 
confidence bounds spanning less than 1%

•	 By a frequentist approach on this small variance data set, 40% 
of individual anesthesiologists were outliers, whereas with a 
Bayesian approach only 1% were

•	 Focusing on changing extubation times only for practitioners 
who were outliers would have minimal effect on operating 
room workflow
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ABSTRACT

Background: One anesthesiologist performance metric is the incidence of “prolonged” (15 min or longer after dressing com-
plete) times to extubation. The authors used several methods to identify the performance outliers and assess whether targeting 
these outliers for reduction could improve operating room workflow.
Methods: Time to extubation data were retrieved for 27,757 anesthetics and 81 faculty anesthesiologists. Provider-specific 
incidences of prolonged extubation were assessed by using unadjusted frequentist statistics and a Bayesian model adjusted for 
prone positioning, American Society of Anesthesiologist’s base units, and case duration.
Results: 20.31% of extubations were “prolonged,” and 40% of anesthesiologists were identified as outliers using a frequentist 
approach, that is, incidence greater than upper 95% CI (20.71%). With an adjusted Bayesian model, only one anesthesiologist 
was deemed an outlier. If an average anesthesiologist performed all extubations, the incidence of prolonged extubations would 
change negligibly (to 20.67%). If the anesthesiologist with the highest incidence of prolonged extubations was replaced with 
an average anesthesiologist, the change was also negligible (20.01%). Variability among anesthesiologists in the incidence of 
prolonged extubations was significantly less than among other providers.
Conclusions: Bayesian methodology with covariate adjustment is better suited to performance monitoring than an unad-
justed, nonhierarchical frequentist approach because it is less likely to identify individuals spuriously as outliers. Targeting 
outliers in an effort to alter operating room activities is unlikely to have an operational impact (although monitoring may 
serve other purposes). If change is deemed necessary, it must be made by improving the average behavior of everyone and by 
focusing on anesthesia providers rather than on faculty. (Anesthesiology 2015; XXX:00-00)
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•• Cases with prolonged tracheal extubations are rated 
by anesthesiologists as having poor recovery from 
anesthesia.3

•	 Increasing time to extubations increases the 
chance that at least one member of the OR team 
(nurses, surgeons, or technicians) will be idle while 
awaiting extubation (P < 0.0001), indicating the 
slowing of workflow: 21% of teams idle when 
extubated for less than 5 min, 42% when 5 to less 
than 10 min, 87% when 10 to less than 15 min, 
and 100% when 15 min or longer (i.e., prolonged 
times to extubation).2*

•	 Cases with prolonged times to extubation have 
substantially (more than 10 min, P < 0.0001) longer 
times from end of surgery to OR exit, even after 
adjusting for the procedure and positioning.4

•	 Cases with prolonged times to extubation have lon-
ger times (P < 0.0001) from when the patient exits 
the OR until the start of surgery of the surgeon’s next 
case in the same OR.1

•	 Because most (P < 0.0001) cases with prolonged 
times to extubation occur during regular workdays 
and in ORs with greater than 8 h of cases and turn-
over times, the extra OR time that results can reason-
ably be treated as an expensive variable cost.5

•	 The incidences of prolonged times to extubations are 
modifiable (e.g., from meta-analysis of randomized 
trials, 95% or greater reduction [lower confidence 
limit] with use of desflurane vs. isoflurane).1,6

•• When surgeons score the importance of anesthesiolo-
gists’ attributes on a scale from 0, “no importance,” 
to 4, “a factor that would make me switch groups/
hospitals,” their average score is 3.9 for “patient quick 
to awaken.”7

In spite of such information, it is unknown whether the 
incidences of prolonged times to extubation are a reliable 
performance metric for individual anesthesiologists and/or  
for anesthesia providers. We therefore had three goals:  
(1) extend the processes outlined in our previous work and 
examine the relative value of frequentist versus Bayesian 
methods for identifying outlier providers for this metric8;  
(2) determine whether efforts at reducing the overall (depart-
mental) incidences of prolonged tracheal extubations would 
best be achieved by focusing on the subgroups of anesthe-
siologists and/or anesthesia providers that are performance 
outliers or rather on the far greater number of providers with 
incidences close to the overall average; and (3) determine 
whether most of the heterogeneity was among anesthesiolo-
gists or the anesthesia providers that they were supervising.

Materials and Methods
The University of Iowa Institutional Review Board (Iowa 
City, Iowa) determined that this retrospective quality assur-
ance project concerned primarily clinical activities and 
did not meet the regulatory definition of human subjects 
research.

The data gathered were from January 1, 2012 to Decem-
ber 31, 2013 and focused on the 27,788 general anesthetics 
in which tracheal intubation and extubation were performed 
in the OR. The details of the structured query language logic 
to create the analyzed data set are provided in table 1 in the 
Supplemental Digital Content 1, http://links.lww.com/
ALN/B214. Because of changes in the AIMS screens (EPIC; 
Epic Systems, USA), no earlier data could be used, and the 
final date was when we started analysis.

The term “anesthesia provider” typically refers to the pro-
vider present continually with the patient. In an academic 
center, these most commonly are residents, nurse anesthe-
tists, fellows, or student nurse anesthetists. For this study, we 
considered only the anesthesiologist and anesthesia provider 
present at the time of tracheal extubation, based on staffing 
information contained in the AIMS. We also limited consid-
eration to residents and nurse anesthetists under the “anes-
thesia provider” category. Student nurse anesthetists were 
included only when they were directly supervised by faculty 
anesthesiologists (not when working one-on-one with a cer-
tified registered nurse anesthetist). Similarly, anesthesiology 
fellows functioned in various roles (sometimes as trainees 
and sometimes supervising other trainees) and were included 
only when working under faculty supervision. Only for a 
small percentage of cases (2.44%) did an anesthesiologist 
studied personally perform the anesthetic. We included 
those cases under the “anesthesiologist” category. In order 
to be included in the performance assessments, the anesthe-
siologist or the anesthesia provider had to have worked for 
the department for at least one 6-month period during the  
2 studied years. These various restrictions reduced the sample 
size for performance analyses to 27,757 tracheal extubations 
for anesthesiologists and 22,086 for anesthesia providers.

Definition of the Prolonged Times to Tracheal Extubation 
Outcome
The time that the surgical dressing was placed on the patient 
was defined as the maximum of dressing/cast completion 
date/time and the procedure end date/time. For 99.72% 
of cases, both were listed, and the dressing/cast completion 
time was the later of the two. “Time to extubation” in this 
data set was defined as the time from dressing complete to 
the recorded time of endotracheal tube removal.

Selection of Covariates for Bayesian Analyses
In the current study, Bayesian models for anesthesiologists and 
anesthesia providers were fit separately under two different con-
ditions: (1) no adjustment and (2) model adjusting for patient 
covariates based on the classification tree analyses. Adjustments 

* Our previous observer study (available at: http://FDshort.com/
Masursky2012) included video (Supplemental Digital Content, 
http://links.lww.com/AA/A396) showing animation of a typical 
observation period, highlighting that 15 min is a very long time in 
terms of operating room activity.
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for the models were performed as follows. First, a large data set 
consisting of all the preoperative characteristics in the AIMS 
for all the patients with tracheal intubation and extubation 
when the patient was in an OR (128 variables) was collected. 
Second, classification tree analyses were performed by using 
SAS Enterprise Miner software 7.1 (SAS Institute Inc., USA). 
Models were compared based on the mean squared error.

Classification/decision tree analysis consists of a hierarchy 
of branches.9 Each branch was divided to up to two branches. 
The same variable was not used in more than one branch.

In a previous study, we found that two principal predic-
tors of prolonged times to extubation were (1) surgery per-
formed in the prone position and (2) whether the time from 
OR entrance until the dressing (a measure of case duration) 
has been placed was 4 h or longer.4 For the current study, all 
128 preoperative and intraoperatively available covariates were 
used in the SAS Enterprise Miner (table 1, and tables 2 and 3 
in the Supplemental Digital Content 1, http://links.lww.com/
ALN/B214). The predictors identified were the same two plus 
(3) whether the numbers of American Society of Anesthesiolo-
gists’ Relative Value Guide base units were 11 units or greater. The 
11-unit cases were principally that of intracranial surgery (fig. 1).

The Bayesian method uses logistic regression models. 
Prone position (prone vs. not prone) and the numbers of 
American Society of Anesthesiologists’ Relative Value Guide 
base unit of the procedure being greater than or equal to  
11 units (11 units or greater vs. less than 11 units) are binary 

variables (yes/no). Time from OR entrance until the dressing 
has been placed is the only continuous variable in the model. 
Even if the time from OR entrance until the dressing has 
been placed was divided to two branches in the decision tree, 
in the actual analysis, this variable was used as a continuous 
variable. Box–Cox transformation was used to determine the 
best transformation for the time from OR entrance until the 
dressing has been placed to satisfy the assumption of a linear 
relation between the transformed variable and the incidence 
of prolonged time to extubation on the logit scale. Two times 
the square-root transformation provided the best result for 
this variable (i.e., closest to linear relation with the incidence 
of prolonged time to extubation on the logit scale).

In the logistic regression model, all main-effects terms as 
well as all two- and three-way interaction (prone × American 
Society of Anesthesiologists base unit × case duration) terms 
were tested. The three-way interaction model was significant, 
and two-way interactions were not significant. The c-statistics 
for this full model was 0.557. When the three-way interaction 
term was not in the model, two of the two-way interaction 
terms stayed nonsignificant. After removing the nonsignifi-
cant two-way interaction terms stepwise from the model, 

Table 1.  Descriptive Statistics for Variables Used in the Model

Variables n Statistics

Time from OR entrance 
until the dressing has 
been placed (min)

27,788

 ��� Mean ± SD 181.19 ± 110.11
 ��� Median (Q25, Q75) 158.00 (103.00, 233.00)
American Society of Anes-

thesiologists’ Base 
Units of the primary 
surgical procedure 
performed

25,944

 ��� Mean ± SD 6.39 ± 2.71

 ��� Median (Q25, Q75) 6.00 (5.00, 7.00)

% missing (%) N

Patient’s last position 0%
 ��� Prone 5.79 (1,610)
 ��� Not prone 94.21 (26,178)
American Society of Anes-

thesiologists’ Base 
Units of the primary 
surgical procedure 
performed

0%

 ��� < 11 92.30 (25,647)
 ��� ≥ 11 7.70 (2,141)

American Society of Anesthesiologists’ Base Units of the primary surgi-
cal procedure performed of 11 includes nearly all intracranial neurological 
procedures.
OR = operating room; Q25 = 25th percentile; Q75 = 75th percentile.

Fig. 1. SAS Miner decision tree (SAS Institute Inc., USA) for 
the incidence of prolonged times from the end of surgery 
(dressing on patient) until tracheal extubation. The time from 
dressing on the patient to removal of endotracheal tube was 
considered prolonged if 15 min or longer. SAS Miner decision 
tree determined the cutoff from entrance into the operating 
room (OR) until the final dressing was placed to be 242 min. 
For ease of interpretation, we rounded this to 240 min (i.e., to 
4 h). This cutoff value matched the results from table 1 of the 
article by Dexter and Epstein,4 obtained using data from a dif-
ferent hospital. Although the time from OR entrance until the 
dressing has been placed was divided to two branches in the 
decision tree, this variable was used as a continuous variable 
in the actual analyses. The American Society of Anesthesiolo-
gists’ Base Units of the primary surgical procedure performed 
are not ratio levels of measurement, but ranked with respect 
to extubation time. The cutpoint of 11 base units achieved the 
least mean square error when it was chosen as the third vari-
able in the decision tree. Intracranial neurological procedures 
have 11 base units.
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all the main effects (the prone position, the time from OR 
entrance until the dressing has been placed, and base units 
were 11 or greater) became significant in addition to the prone 
and base unit interaction term. The c-statistics of this model 
was identical to the c-statistics of the full model (0.557). The 
model with main-effects and one interaction term was used 
(the prone position, the time from OR entrance until the 
dressing has been placed, and base units were 11 or greater and 
prone × base units), instead of the full model, as it was more 
parsimonious, and easier to interpret. This reduced model was 
also consistent with the decision tree produced by the SAS 
Enterprise Miner (fig. 1). Histograms showing the distribu-
tion of time to extubation for each of the five branches in 
figure 1 are presented in figure 2.

All 125 of the covariates that were not used in the model 
were tested individually against the reduced model (main-
effects model of prone position, the numbers of American 
Society of Anesthesiologists’ Relative Value Guide base units 
of greater than or equal to 11, and the OR in dress time and 
the interaction of prone and base unit) to test whether any 
of the other covariates make a meaningful increase on the 
area under the curve. The individual improvements on the 
area under the curve, after the inclusion of other variables, in 
addition to the existing model, were all less than 3.1% abso-
lute increment. For example, although Dexter and Epstein4 

did not find age to be predictive for prolonged time to extu-
bation, it is a common covariate, and thus we investigated 
it in detail; its resulting absolute increase in the area under 
the curve was only 0.23%. Therefore, the preceding logistic 
regression model was used in the Bayesian hierarchical gen-
eralized linear model.

Frequentist Outlier Detection Methods
Methods for modeling anesthesiologists are explained in this 
section. The same methods are applied below for modeling 
anesthesia providers.

The first objective of the current article was to identify 
those anesthesiologists with a significantly greater incidence 
of prolonged tracheal extubations than the other anesthe-
siologists. This was needed to learn what percentage of 
prolonged tracheal extubations was attributable to outlier 
anesthesiologists. To do this, “outlier” needed to be defined.

There are multiple frequentist criteria for defining an 
outlier. For example, Ehrenfeld et al.10 defined the “worst” 
5% of all anesthesiologists (on any metric) as being outli-
ers, regardless of their specific performance. An alterna-
tive is to examine the overall incidence of a given event  
(e.g., prolonged time to extubation), calculate confidence 
bounds around that incidence, and define any provider 
whose individual incidence is beyond the 95% upper bound 

Fig. 2. Histogram of time to extubation for the five entries of figure 1. The incidences for “prolonged time to extubations,” when 
the time to extubation was 15 min or longer, are also presented for each panel. Time to dressing: time from operating room 
entrance until dressing was placed on the patient.

Copyright © 2015, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
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to be an outlier. Typically, such frequentist metrics are unad-
justed. If an individual’s incidence is greater than the bound-
ary, by any margin, they are considered an outlier, regardless 
of case numbers, case types, or other factors. For this article, 
we examined the upper one-sided 95% CI of the overall 
incidence of prolonged tracheal extubations and treated this  
CI as a threshold for frequentist outlier although we recog-
nize that other definitions might be used.

Bayesian Outlier Detection Methods
The method developed by Chaloner and Brant11 and applied 
by Bayman et al.12 was used to identify outliers. Bayman  
et al.12 introduced a Bayesian approach to detect the outli-
ers among centers in multicenter clinical trials. In the current 
study, their method was applied to detect anesthesiologists 
with incidences of prolonged times to extubation that were 
different from other anesthesiologists, while taking into 
account patient and procedure characteristics. Adjusted and 
unadjusted models were fit separately for each of anesthesiolo-
gists and anesthesia providers. The same covariates were used 
for model 1 including anesthesiologists and model 2 including 
anesthesia providers.

It was assumed that each tracheal extubation was per-
formed by a single anesthesiologist, either an anesthesi-
ologist for model 1 or nurse anesthetists or residents for 
model 2. In mathematical terms, anesthetics were nested 
within anesthesiologists. Bayesian hierarchical gener-
alized linear models were fit for the prolonged time to 
extubation outcome. Details of the model are given in 
appendix A.1.13,14

In Bayesian analyses, unknown parameters are random 
variables and therefore prior probability distributions should 
be defined. The Bayesian model combines the prior distribu-
tion with data and produces a posterior distribution. Inferences 
are made from the posterior distribution. Bayesian credible 
intervals, analogous to frequentist CIs, were constructed based 
both on the prior information and the observed data.

Two different prior probabilities were examined for an 
anesthesiologist having an incidence of prolonged time to 
extubation that was so different from others that he or she 
appeared to be an outlier: (1) the prior probability of each 
anesthesiologist having an outlier incidence of prolonged tra-
cheal extubations was set to 5% (appendix A.2).11 (2) The prior 
probability of no anesthesiologist in the department being 
an outlier over 2 yr was set to 95% (appendix A.3).11 With  
81 anesthesiologists in the department during the study 
period, the prior probability of each anesthesiologist being 
an outlier was 0.06% (appendix A.3).11

Prior distributions used for the overall mean, and the coef-
ficients for the fixed-effect terms such as patient’s prone posi-
tion, the time from OR entrance until dressing was placed 
on the patient, and whether the case’s number of American 
Society of Anesthesiologists’ Relative Value Guide base unit 
was 11 units or greater were assumed to be normally distrib-
uted, as usual for these types of analyses, and were weakly 

informative (have very large SDs). Random prior distribu-
tions were defined for each anesthesiologist.

Posterior probabilities of being an outlier were calculated 
for each anesthesiologist, and the strength of evidence was 
quantified by the Bayes factor.14 Bayes factor is the ratio of 
the posterior odds in favor of the null to the prior odds of 
the null.15 The most common interpretation of Bayes fac-
tor classifies evidence against the null hypothesis as “strong,” 
“very strong,” and “decisive” when the Bayes factors were less 
than 10−1, 10−1.5, and 10−2, respectively, according to Jeffreys 
scale.14 Kass and Raftery16 recommend a more conservative 
interpretation where Bayes factors less than 0.33, 0.05, and 
0.0067 are classified as “positive,” “strong,” and “very strong” 
evidence against the null hypothesis. With both scales, Bayes 
factor greater than 1 provides evidence for the null hypoth-
esis. The overall posterior probability for at least one of the 
anesthesiologists being an outlier was also calculated. An 
anesthesiologist with a Bayes factor less than 0.1, which indi-
cates “strong” evidence according to the Jeffreys scale,14 was 
identified as an outlier.

Bayes factors for those anesthesiologists (or anesthesia 
providers) with a significantly greater or lesser incidence of 
prolonged times to extubations than the other anesthesi-
ologists are provided in the figure legends. In addition, the 
strength of evidence was provided among outlier anesthesi-
ologists with “strong,” “very strong,” and “decisive” evidence. 
It should be noted that, an anesthesiologist who is an out-
lier with a “decisive” evidence is also an outlier with a “very 
strong” and “strong” evidence. The direction of the outlier 
anesthesiologist, with significantly greater or significantly 
less incidence than the rest of the anesthesiologists, was 
determined by the sign of the random anesthesiologist effect 
(δk). A negative δk indicates a greater incidence of prolonged 
times for tracheal extubation for the kth anesthesiologist. 
Anesthesiologists (or anesthesia providers) with both signifi-
cantly greater and significantly less incidence of prolonged 
times to extubations are reported. Analyses were repeated 
by using different prior distributions as sensitivity analyses 
(appendix A.4)14,17 (for statistical details and explanations of 
the WinBUGS model, see the appendix A.5).18

The log odds of not having a prolonged time to extuba-
tion for the ith endotracheal extubation for anesthesiologist 
k (θik) for the adjusted Bayesian model when each anesthe-
siologist’s prior probability of being an outlier was set to 5% 
with posterior means substituted as estimates for the coef-
ficients is as follows:

θik = − − −
+ ×

1 81 0 36 0 75 0 01
0 20
. . . .
.

Prone BaseUnit ORDrTime
Prone BaseeUnit + δk .

See appendix A.1 for the explanations of the model terms. 
There are 81 different values of the random anesthesiologist 
effect term, δk. They range from −0.9555 to 0.4990 on the 
logit probability scale.

For the second goal to determine whether targeting outli-
ers might have a meaningful impact on OR workflow, further 
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calculations were performed as follows. For calculations to 
represent a typical patient, probabilities of prolonged tra-
cheal extubations were calculated based on all 27,757 anes-
thetics. To calculate the incidence if all patients were cared 
for by the average anesthesiologist, the pooled estimate of 
the random anesthesiologist effects was used (appendix A.6). 
To calculate the incidence of prolonged tracheal extubations 
if the anesthesiologist with the largest adjusted incidence of 
prolonged times to extubations cared for every patient, this 
provider’s random provider effect (delta35 = −0.9555) was 
used for all 27,757 anesthetics.

Basic data analyses were performed by using SAS soft-
ware 9.3, and classification tree analyses were performed 
by using SAS Enterprise Miner software 7.1 (SAS Insti-
tute Inc.). Plots were created using SigmaPlot version 12.5 
(Systat Software, USA) and R version 3.0.0 (The R Foun-
dation, Austria).19 Bayesian analyses were performed by 
using WinBUGS 1.4.3 software.18 WinBUGS uses Mar-
kov chain Monte Carlo methods. To represent the extreme 
regions of the parameter space, three parallel chains of 
equal lengths with disperse initial values were used in 
WinBUGS analyses. Convergence was judged by Brooks, 
Gelman, Rubin diagnostics plots,20 density and history 
plots, and autocorrelations.

Bayesian results were based on 5,000 iterations after a 
burn-in period of 5,000 iterations in each chain (Supple-
mental Digital Content 2, http://links.lww.com/ALN/
B215).

To test whether (1) anesthesiologists or (2) anesthesia 
providers have greater variability in the incidence of pro-
longed extubation, the Convergence Diagnostic and Output 
Analysis option of WinBUGS program was used. For both 

adjusted models from anesthesiologists and anesthesia pro-
viders, between-anesthesiologist or between-anesthesia pro-
vider SDs were monitored for all 15,000 replications. The 
two groups each with 15,000 replications were compared by 
the Wilcoxon rank sum test. The Wilcoxon–Mann–Whitney 
odds (WMWodds) was used as a summary measure for the 
Wilcoxon rank sum test.21,22

Reporting of Bayes Used in Clinical Studies guidelines 
was followed to report Bayesian analyses in this study.23

Results
The overall incidence of prolonged times to extubation 
among 27,757 cases with anesthesiologists was 20.31% 
(the upper 95% CI, 20.71%) (table 2). The incidence based 
on the 22,086 cases with an anesthesia provider present  
(i.e., anesthesiologist not personally performing the case) 
was 19.75% (the upper 95% CI, 20.20%) (table 3).

Summary results and unadjusted (raw) incidences of pro-
longed tracheal extubations are given in table 2 and figure 3 
for anesthesiologists and in table 3 and figure 4 for anesthe-
sia providers. For example, 81 anesthesiologists performed 
27,757 extubations, and the number of extubations per 
anesthesiologist ranged from 13 to 1,079.

Comparisons Based on Frequentist Methods
When the frequentist method (described in the Frequentist 
Outlier Detection Methods section) was used, those anesthe-
siologists with an incidence of prolonged extubations greater 
than 20.71% (the upper 95% CI) would be classified as outli-
ers. However, this corresponded to 40% (32 of 81) of the anes-
thesiologists in our department (table 2). Similarly, incidences 

Table 2.  Summary Results for Anesthesiologists for the Incidences of Prolonged Times to Tracheal Extubations between January 1, 
2012 and December 31, 2013

Each Anesthesiologist’s Prior  
Probability of Being Outlier = 5%

The Departmental Prior Probability  
of Any Outlier Anesthesiologist = 5%

Number of anesthetics evaluated 27,757
Number of evaluated anesthesiologists 

supervising at least one anesthetics
81

Number of anesthetics per anesthesiologists 13 to 1,079
The incidence of evaluated anesthetics with 

noncompliance
20.31%

Anesthesiologists identified as performance outliers
  Frequentist n = 32 of 81

Significantly greater incidence
 ��� Bayesian unadjusted n = 2 of 81 n = 1 of 81
  ���  Significantly greater incidence (31.33%, 42.50%) one strong  

(no. 4), one decisive (no. 35)
(42.50%) one decisive (no. 35)

  ���  Significantly lesser incidence 0 of 81 0 of 81
 ��� Bayesian adjusted n = 2 of 81 n = 1 of 81
  ���  Significantly greater incidence (30.27%, 42.50%) one strong (no. 6),  

one decisive (no. 35)
(42.50%) one decisive (no. 35)

  ���  Significantly lesser incidence 0 of 81 0 of 81

The between-anesthesiologist variance (the variance of δk’s) for the adjusted Bayesian model with the individual prior probability is 0.3142 on the logit 
probability scale. The random anesthesiologist effects change between −0.956 and 0.499. For the anesthesiologist with a significantly greater adjusted 
incidence of prolonged time to extubation than the other anesthesiologists, δk is −0.956 on the logit probability scale.
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of prolonged times to endotracheal extubation were signifi-
cantly greater than 20.20% (the upper 95% CI) for more than 
half (54%, 63 of 116) of the anesthesia providers (table 3). 
These “outliers” are presented with blue hexagons in figures 3 
and 4. Because such numbers stretch the meaning of the word 
“outliers,” we do not rely on this approach any further.

Comparison among Anesthesiologists Based on the 
Bayesian Approach
When the Bayesian model was used without adjusting for 
any patient and surgical covariate, and each provider’s prior 
probability of being outlier was set to 5%, two anesthesi-
ologists (nos. 4 and 35) were identified as having a signifi-
cantly greater incidence of prolonged times to extubation 
than the other anesthesiologists (first column of table 2) 
(nos. 4 and 35 refer to the anesthesiologists with the 4th 
and 35th largest numbers of tracheal extubations over the 
2 yr). Observed incidences of prolonged times to extuba-
tions for these anesthesiologists were 31.33 and 42.50%. 
The posterior probabilities of these anesthesiologists being 
outliers were 42 and 99%.

When the Bayesian model was used after adjusting for 
prone positioning, the numbers of American Society of 
Anesthesiologists’ Relative Value Guide base unit, and the 
time from OR entrance until dressing was placed on the 
patient, two anesthesiologists (nos. 6 and 35) were identi-
fied as having significantly greater adjusted incidence of pro-
longed times to extubation than the other anesthesiologists 
(table 2 and fig. 3). The posterior probabilities for these two 
anesthesiologists being outlier were increased from 5% to 
47% and 99%, respectively.

There was no anesthesiologist with a significantly lesser 
incidence of prolonged tracheal extubation times than other 
anesthesiologists, both by unadjusted and adjusted Bayesian 
models.

To quantify the variability among anesthesiologists, we 
statistically treated each of the 81 anesthesiologists as car-
ing for the same representative patient. This representative 
patient was defined as one that underwent a procedure in 
any position other than prone, with 10 or fewer American 
Society of Anesthesiologists’ Relative Value Guide base units, 
and a case duration of 158 min or less. Random anesthesi-
ologist effects were used from the adjusted model, with each 
provider’s prior probability of being outlier was set to 5%. 
Figure 5 shows the plot of rank of anesthesiologists and the 
associated 95% credible intervals (vertical axis) by the inci-
dence of prolonged tracheal extubations (horizontal axis) 
for this representative patient. Those anesthesiologists with 
greater incidences of prolonged times to extubations were 
ranked lower and can be found on the left side of the figure.

The zoomed version of figure 5 for those anesthesiolo-
gists with 20% or greater incidence of prolonged times to 
extubations is provided in figure 6. The one anesthesiologist 
with a significantly greater adjusted incidence of prolonged 
times to extubation for both unadjusted and adjusted model 
(no. 35) is ranked 1 and represented with a red square on 
this figure. The associated 95% credible interval of the rank 
is narrow. The anesthesiologist who was detected as an out-
lier according to the unadjusted model, but not adjusted 
model, is presented with a solid green triangle. The anes-
thesiologist detected as an outlier according to the adjusted 
model, but not the unadjusted model, is presented with a 

Table 3.  Summary Results for Anesthesia Providers (Certified Registered Nurse Anesthetists/Residents) for the Incidences of 
Prolonged Times to Tracheal Extubations between January 1, 2012 and December 31, 2013

Each Anesthesia Provider’s Prior  
Probability of Being Outlier = 5%

The Departmental Prior Probability of Any 
Outlier Anesthesia Provider = 5%

Number of anesthetics evaluated 22,086
Number of evaluated anesthesia providers 

supervising at least one anesthetics
116

Number of anesthetics per anesthesia 
providers

20 to 495

The incidence of evaluated anesthetics with 
noncompliance

19.75%

Anesthesia providers identified as performance outliers
  Frequentist n = 63 of 116
��� Significantly greater incidence
 ��� Bayesian unadjusted n = 0 of 116 n = 0 of 116
  ���  Significantly greater incidence (Not applicable) (Not applicable)
  ���  Significantly lesser incidence 5 of 116: 4 decisive (nos. 15, 18, 23,  

and 24) and 1 strong (no. 4)
4 of 116: 1 decisive (no. 24), 3 strong  

(nos. 15, 18, and 23)
 ��� Bayesian adjusted n = 1 of 116 n = 0 of 116
  ���  Significantly greater incidence (41.35%) 1 strong (no. 70) (Not applicable)
Significantly lesser incidence 5 of 116: 2 decisive (nos. 23 and 24),  

2 very strong (nos. 15 and 18), and 1 
strong (no. 4)

3 of 116: 1 decisive (no. 24), 2 strong  
(nos. 15 and 23)

For the adjusted Bayesian model with the individual prior probability, random anesthesia provider effects change between −1.041 and 1.653 on the logit 
probability scale. The between-anesthesia provider variance for this model is 0.558.2
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blue square. Importantly, the credible intervals in the figure 
are not adjusted for multiple comparisons24 (i.e., actual cred-
ible intervals would be even wider than the already wide, 
displayed intervals). This highlights the strength of evidence 
that there was one outlier, anesthesiologist no. 35; none of 
the other 80 anesthesiologists differed significantly from one 
another in their incidences of prolonged times to tracheal 
extubation.

Figure 7 provides another view of the information in fig-
ures 5 and 6. The figure 7 also shows the substantial overlap 
of the posterior incidences of prolonged tracheal extubations 
among anesthesiologists. In figure 7, the posterior distribu-
tions of the ranks of five selected anesthesiologists are dis-
played, those being the anesthesiologists with representative 
patient incidences of prolonged times to extubation of 35, 
25, 20, 15, and 10%, respectively. For example, figure 7A 

shows the simulated relative ranks for the anesthesiologist 
with the incidence of prolonged times to extubation of 35% 
for the representative patient. The posterior rank distribu-
tion of that anesthesiologist no. 35 is centered on the rank 
of 1 with a small SD and in only some replications hav-
ing a rank of 2. In other words, for almost all replications, 
this anesthesiologist’s rank was 1, indicating the greatest 
incidence of prolonged times to extubation. However, for 
all other anesthesiologists, there were substantial overlaps of 
credible intervals of ranks. The latter is the important find-
ing because it applies to 80 of 81 anesthesiologists.

Based on these results, we concluded that the anesthesi-
ologist no. 35 was truly an outlier.

For the analyses for the second goal, using each patient’s 
three variables (prone position, numbers of American Soci-
ety of Anesthesiologists’ Relative Value Guide base units, and 
time from OR entrance until the dressing has been placed), 
the probability of prolonged tracheal extubations was recal-
culated for every case under five different scenarios: (1) no 
change; (2) if all anesthesiologists had the overall perfor-
mance of the average anesthesiologist, (3) all anesthesiolo-
gists had the performance of the sole outlier anesthesiologist 
(i.e., anesthesiologist no. 35 with the greatest adjusted inci-
dence of prolonged times to extubations), (4) the anesthe-
siologist with the greatest adjusted incidence of prolonged 
times to extubations (anesthesiologist no. 35) was replaced 

Fig. 4. Dotplot for prolonged time to extubation for cases 
ending January 1, 2012 through (and including) December 31, 
2013, and classified by anesthesia provider (resident or nurse 
anesthetist) according to the adjusted Bayesian model. Each 
anesthesia provider’s prior probability of being an outlier was 
set equal to 5%. One provider was detected as having signifi-
cantly greater adjusted incidence of prolonged time to extu-
bation than the other providers with strong evidence (Bayes 
factor [BF]70 = 0.08). There were five anesthesia providers 
with a significantly less incidence of tracheal extubations 
than other anesthesia providers; two with decisive evidence  
(BF23 = 0.008, BF24 = 0.0009), two with very strong evidence 
(BF15 = 0.010, BF18 = 0.016), and one with strong evidence 
(BF4 = 0.06). Incidences of prolonged times to extubations for 
these providers were between 2.32 and 6.80%.

Fig. 3. Dotplot for prolonged time to extubation for cases 
ending January 1, 2012 through (and including) December 
31, 2013 and classified by anesthesiologist. Each anesthe-
siologist’s prior probability of being an outlier was set equal 
to 5%. Bayes factors (BF) for those anesthesiologists with a 
significantly greater or less incidence of prolonged times to 
extubations than the other anesthesiologists are provided. 
For example, BF1 represents the BF of the first anesthesiolo-
gist (the anesthesiologist with the greatest number of tracheal 
extubations in 2 yr). These results using the adjusted model 
show two outlier anesthesiologists. One anesthesiologist 
was an outlier with strong evidence (BF6 = 0.06). The other  
anesthesiologist was an outlier with decisive evidence  
(BF35 = 0.0001). That second anesthesiologist who was de-
tected as an outlier with decisive evidence was, by definition, 
also an outlier with “very strong” and “strong” evidence. Note 
that, these two anesthesiologists were also detected as fre-
quentist outliers, which is why their symbols also include some 
blue. The posterior probability for the department having at 
least one outlier anesthesiologist was 99.9%. The far left side 
of the figure shows data from an anesthesiologist with an ad-
justed incidence of prolonged time to extubation of 4%. This 
anesthesiologist was not detected as an outlier (i.e., did not 
have a significantly less incidence of prolonged times to ex-
tubation than the other anesthesiologists). This anesthesiolo-
gist’s incidence was still within the normal variability expected 
from a normal distribution among the anesthesiologists.
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by the average anesthesiologist’s effect, and (5) the perfor-
mances of the 32 frequentist outlier anesthesiologists were 
replaced by that of the average anesthesiologist.

If each of 81 anesthesiologists own random-effect term was 
used, the average probability of prolonged times to extubation 
became 20.24%. If an average anesthesiologist performed all 
27,757 extubations, the average incidence would increase only 
0.43%, a clinically and managerially unimportant change 
(standard errors [SEs] for this and the next four results were 
all less than 0.2%). In other words, as suggested in figures 5 
and 7, most anesthesiologists performed very similar to the 
average. In contrast, if all anesthesiologists had the same inci-
dence as the outlier anesthesiologist, with the greatest inci-
dence, the incidence of prolonged endotracheal extubations 
would be 37.63% (i.e., almost doubled). This is substantial, 
and the implication is that the one outlier anesthesiologist 
had substantially longer extubation times than the other anes-
thesiologists. Still, there was just one individual outlier anes-
thesiologist. When that anesthesiologist’s random effect (i.e., 
personal adjusted incidence) was replaced with the weighted 

average of all anesthesiologists, the overall incidence became 
20.01%, just 0.23% less than when using anesthesiologists’ 
own random-effect term (20.24%). This 0.23% reduction is 
the principal (practical) question of importance because mon-
itoring for outlier anesthesiologists would be useful only if this 
difference had been substantial. If the 32 frequentist outlier 
anesthesiologists’ performances were replaced by the weighted 
average of all anesthesiologists, the average probability of pro-
longed times to extubation would be 18.92%, only a 1.32% 
reduction from 20.24%. This result implies that we should try 
other things to improve this outcome.

The analysis by anesthesiologist included n = 27,757 
cases, but that of residents and nurse anesthetists included 
n = 22,086 cases because of cases with anesthesiologist only, 
student nurse anesthetists, or fellows. The adjusted model 
was rerun using just the 22,086 cases, and with the prior 
probability of each anesthesiologist being an outlier equal to 
5%. The results were indistinguishable, with the SD for the 
random anesthesiologist effect in the logit scale being 0.317 
(SE = 0.030) instead of 0.314 (SE = 0.029).

Fig. 5. Using the median of 158 min based on all 27,757 anesthetics. Rank of the incidences of prolonged times to extubation 
among anesthesiologists. The ranks are provided on the vertical axis of the figure. Those anesthesiologists with greater inci-
dences of prolonged times to extubation have been assigned lesser ranks (i.e., the anesthesiologist with rank 1 had the greatest 
adjusted incidence of prolonged times to tracheal extubation). That anesthesiologist has decisive evidence of being an outlier 
(red square). Anesthesiologists who tend to have lesser incidences of prolonged times to tracheal extubation compared with the 
other anesthesiologists are cumulated toward the right hand side, toward the rank of 80. For example, for the anesthesiologist 
on the far right hand side, the 95% credible interval ranges between 60 and 80. That result means that the rank of this particular 
anesthesiologist was between 60 and 80 for 95% of the 15,000 replications. In other words, that anesthesiologist’s incidence 
of prolonged time to tracheal extubation was less than most other anesthesiologists. The differences between the observed 
and adjusted incidences of prolonged times to tracheal extubation were small (mean = 1.3%, SD = 3%) and were the largest for 
those anesthesiologists on the left tail area for all 81 anesthesiologists. For those 10 anesthesiologists at each extreme of the 
distribution (five on each side), percentage of the times the anesthesiologist personally performed the extubation (i.e., there was 
no anesthesia provider present) was similar (medians are less than 5%).
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Comparison among Anesthesia Providers Based on the 
Bayesian Approach
The same methods were applied to the extubation times of the 
116 anesthesia providers, resident physicians, and nurse anes-
thetists. The overall incidence of prolonged tracheal extuba-
tion times for the 22,086 tracheal intubation and extubations 
performed by this group was 19.75%. There was not even 
one anesthesia provider with a significantly greater incidence 
of prolonged times to extubation than the other anesthesia 
providers, according to the unadjusted Bayesian model when 
each provider’s prior probability of being outlier was set to 5% 
(first column of table 3). When the adjusted Bayesian model 
was used, one provider was detected as having significantly 
greater adjusted incidence of prolonged times to extubation 
than the other providers (no. 70). The posterior probability 
for this anesthesia provider being an outlier was 39.5%.

Variability among Anesthesiologists versus among 
Anesthesia Providers
Anesthesiologists (and anesthesia providers) were assumed 
to have a random normal distribution with mean 0 and SD 
of σ, where σ represents the within-group (within anesthe-
siologists or within anesthesia providers) variability of the 
logit of the probability of prolonged time to extubation. 
When between-anesthesiologist SDs of the random effects 
identifying the provider were compared by using adjusted 
models of (1) anesthesiologists σAnesthesiologist =( )0 314.  versus 
(2) anesthesia providers σAnesthesia provider =( )0 558. , a greater 
variability was observed among the anesthesia providers  
(P < 0.00001 for both two independent-samples t test and 

Wilcoxon rank sum test, see fig. 1 in Supplemental Digi-
tal Content 3, http://links.lww.com/ALN/B216, for a box 
plot). The odds of the SD being less among anesthesiologists 
than anesthesia providers was at least 1,000 (WMWodds 
lower 95% CI). When the same calculations were performed 
using a noninformative prior distribution for the SD of the 
random anesthesiologist effect, or setting the individual prior 
probability of being outlier to 1% or 10% for each anesthe-
siologist and anesthesia provider, the WMWodds was still at 
least 1,000 (lower 95% CI). This shows that the greater vari-
ability in incidences among anesthesia providers than among 
anesthesiologists is robust to the selected prior distributions. 
The greater variability among anesthesia providers versus 
anesthesiologists can be seen graphically. For example, in 
figures 3 and 4, the incidences of prolonged times to endo-
tracheal extubation were between 10 and 30% among 94% 
of anesthesiologists versus among 72% of anesthesia provid-
ers. Figure 8 is a quantile-quantile plot comparing the distri-
bution of the incidences of prolonged times to endotracheal 
extubation among anesthesiologists versus among anesthesia 
providers (see Discussion).

Discussion
Recent years have seen an increase in the development and 
application of provider and group-focused metrics. Such met-
rics may be intended to identify individual providers whose 
performance differs from either their peers or from various 
benchmarks. They may also be used to guide administrative 
efforts to alter group practices. Although all such metrics are 
intended to improve patient care, it is not always apparent 

Fig. 6. Zoomed version of the first 15 anesthesiologists with 20% or higher incidence of prolonged times to extubations adjusted 
to a representative patient.
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that these efforts achieve the desired effect. The metric itself 
may be inappropriate for the proposed purpose. The metric 
may not actually be under the control of the accountable 
provider. Providers or groups may be inappropriately identi-
fied as failing to meet a metric although critical covariates 
were not taken into consideration. In addition, basic statisti-
cal issues may be ignored, and an individual identified as 
an outlier when, in fact, the individual’s performance is not 
significantly different from others.

From an operational perspective, focusing on the per-
formance of outlying providers, while seeming to be “intui-
tively obvious,” may not actually result in any meaningful 
changes in overall performance, thereby potentially wasting 
effort and resources.

Prolonged time to extubation is one such proposed 
individual or group metric. However, its use shares the 
caveats noted above. Simply defining a provider as being 
an outlier by setting a fixed boundary and failing to incor-
porate important covariates in the analysis can result in an 
unreasonably large fraction of providers being defined as 

outliers. For example, an anesthesiologist who cares prin-
cipally for patients undergoing long-duration procedures 
in the prone position might inappropriately be declared 
as an outlier. Another individual who cares principally 
for patients undergoing brief procedures in the supine 
position with a lower incidence of prolonged extubations 
might be overlooked.

In this study, we showed that prolonged times to tracheal 
extubation can reliably and validly12 be monitored by using 
Bayesian methods incorporating important covariates and 
key statistical factors (e.g., the impact of widely differing 
case numbers between providers). Clinically unusual care 
can be identified and an individual’s clinical practice from 
a quality management perspective reviewed. However, while 
identifying a provider whose performance is deemed “outly-
ing” may have value from an individual quality assessment 
perspective, and from a lifelong learning perspective of the 
faculty anesthesiologist, we also demonstrated that targeting 
such providers for improvement would not have meaningful 
impact on OR workflow. The few (e.g., 1 or 2) true outliers 

Fig. 7. Posterior distribution of the rank among five anesthesiologists with selected adjusted incidences of prolonged times to 
tracheal extubation. The posterior distributions of the ranks of five selected anesthesiologists are displayed in A to E; those be-
ing the anesthesiologists with representative patient incidences of prolonged times to extubation of 35, 25, 20, 15, and 10%, 
respectively. The rank distribution of the anesthesiologist corresponding to the adjusted incidence of 25% is skewed to the left. 
This indicates that this particular anesthesiologist had greater incidence of prolonged times to extubations compared with other 
anesthesiologists. Two anesthesiologists corresponding to 15 and 20% incidences have wider distributions at the middle of the 
range. The rank distribution of the anesthesiologist with the lowest incidence of prolonged times to extubation (10%) is skewed 
to the right. Note that the upper range of the y-axis for A and B is different, 3 and 25, respectively. The upper limits for the other 
figures go up to 81.
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each account for too few of all of the prolonged times to 
extubations.

Previously, we showed that prolonged times to extu-
bations significantly and substantively reduce OR work-
flow (see introductory text of the current paper).1–7 When 
they occur, members of the OR team are idle waiting for 
extubation (i.e., prolonged extubations are bottlenecks to 
patient flow).2 The current results show that change needs 
to be made by reducing the average behavior of everyone, 
not just a selected few. This might be accomplished admin-
istratively (e.g., by altering agents available to providers)1,6 
or by daily case tracking and feedback to any providers 
whose times were prolonged after accounting for key 
covariates. A process similar to this has been shown to be 
effective in reducing operative fresh gas flows (and hence 
volatile agent utilization).25,26 The increased variability 
among care providers (assuming they were responsible for 
the conduct of the entire anesthetic) is not surprising in a 
university center with trainees of varying degrees of expe-
rience. However, because the variability in the incidence of 
prolonged extubations was greater among anesthesia pro-
viders than anesthesiologists (P < 0.00001, WMWodds > 
1,000), providing feedback to anesthesiologists should be 
targeted to their roles as managers (“supervisors”), less so 
as clinicians directly influencing the extubation times dur-
ing patient care.27

The finding of lack of managerial (economic) value 
in comparing individual anesthesiologists and anesthe-
sia providers based on a clinically collected measure that 
combine clinical and operational features matched that 
which has been found for other endpoints. For example, 
anesthesiologists differ substantively in their patients’ 
initial postanesthesia care unit pain scores on univari-
ate analysis.28 These differences disappear when con-
trolled for the two principal predictors, patient age and 
the nurse obtaining the pain score. Similarly, anesthe-
siologists differ substantively in their odds of a patient 
complaint by univariate analysis,29 but again this dis-
appears when controlled for patient age and tardiness 
of case start time. In other words, apparent differences 
among providers can be unrelated to the specific actions 
of those providers and “targeting” those providers would 
be fruitless. In contrast, anesthesiologists differ signifi-
cantly in their clinical care, teaching, and teamwork 
when evaluated by the anesthesia providers with whom 
they work.30–34

The principal limitation of our study results is that they 
are from just one university hospital, and several features of 
that hospital are prominent. First, nearly all cases were per-
formed with an anesthesiologist supervising an anesthesia 
provider (e.g., resident physician or nurse anesthetist). Our 
findings of lack of value in monitoring for outlier individuals 

Fig. 8. The quantile-quantile plot comparing anesthesiologists versus the anesthesia providers adjusted to a representative 
patient. This is a plot of sorted quantiles for anesthesiologists against the sorted quantiles for anesthesia providers. When 
the two distributions are similar, the plot should lie on the identity line (the straight line). Below the 20% incidence of pro-
longed extubation, anesthesia providers have lower incidence compared with anesthesiologists. Above 20%, incidences 
for anesthesia providers exceed the incidences for anesthesiologists. Above 20%, except the anesthesiologist with higher 
incidence of prolonged times to extubations (anesthesiologist no. 35), all the anesthesiologists have values on the upper 
side of the identity line indicating a location shift. In addition, we can see from this plot that incidence ranges differ. Except 
the outlier anesthesiologist, the upper range of incidence for the anesthesiologists is less than 35%. In contrast, there are 
several anesthesia providers with incidences above 35%. This plot visually displays our conclusion of larger variability 
among anesthesia providers compared with anesthesiologists.
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would likely not apply to a department at which anesthesi-
ologists personally deliver most anesthetics.

In contrast, because we have studied a hospital with 
nurse anesthetists, the results for anesthesia provid-
ers would only apply where there are anesthetic team 
model. We have no insight as to whether the variability 
among anesthesiologists would more closely mimic that 
of our anesthesiologists at a hospital with only anesthe-
siologists or would more closely reflect our anesthesia 
providers. Second, because there are so many different 
anesthesiologists and anesthesia providers, we could not 
analyze interactions32; this would be a good focus for 
future research. Third, individuals present at the time 
of extubation may or may not have been responsible for 
the majority of the conduct of the anesthetic. Fourth, 
our department’s overall incidence of prolonged times 
to tracheal extubation was 20%, and even 18% among 
the patients with the lowest risk. In contrast, the inci-
dences were 15 and 15% at two previously studied hos-
pitals,1,2,35 and 7% in the original (phase IV study) use 
of propofol.3 Our department has a low use of the fastest 
drug,1,6,36 desflurane, but given the homogeneity of the 
large incidence among all types of patients, this cannot 
explain the observation.

Quantitative neuromuscular monitoring is used for all 
general anesthetics,37 unlike at the other facilities,1–3 and 
with sugammadex not available, perhaps extubation times 
are often limited by waiting for reversal. Regardless, such a 
systematic effect would not influence our conclusions.

In conclusion, prolonged extubation is an important 
metric, but that is minimally influenced by differences 
among individual practitioners. Monitoring few outlier 
anesthesiologists (or anesthesia providers) with unusu-
ally great incidences of prolonged times to extubations is 
not warranted. If change is desired, monitoring and feed-
back to groups of individuals needs to focus on anesthesia 
providers.
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Appendix

Details of the Bayesian Model and the Weighted Average 
Calculation
Methods are described in terms of anesthesiologists in this 
section. Same methods can be applied to anesthesia provid-
ers everywhere anesthesiologists were referred.

A.1. The Bayesian Model 
Let nk denote the number of anesthetics with extubation by 
anesthesiologist k (k = 1, …, K), where K is the current num-
ber of anesthesiologists (or anesthesia providers) in the depart-
ment from January 1, 2012 to December 31, 2013. yik = 1 
denotes not having a prolonged time to extubation. In other 
words, yik = 1 if the time from dressing on the patient until 
extubation of the trachea was less than 15 min for anesthetic i 
(i = 1,…, nk) for anesthesiologist k; and yik = 0 if the duration 
was 15 min or longer. Assuming each anesthesiologist’s inci-
dence of prolonged endotracheal extubations is independent 
of another anesthesiologist, yik are Bernoulli random variables, 
and the probability of not having a prolonged time to extuba-
tion can be denoted by pik. In other words, 

y p n pik ik k ik| ~ , .Bin  ( )
The logit link is used to normalize the incidence of pro-
longed time to extubation. The log odds of a prolonged 
time to extubation for anesthetic i with anesthesiologist k is 
denoted as follows:

θik ik ik ikp p p= ( ) = −( ) logit ln / .1

θik can be written as a function of characteristics of the patient 
and the surgical procedure. For example, the final model with 
the significant covariates can be written as follows:

θ β β
β

ik = + + +
+ ×

µ βPrProne BaseUnit DressTime
Prone BaseUni

BU Dr

PrBU tt + δk ,

where μ is the intercept in the logit scale, βPr, βBU, βDr, and 
βPrBU are coefficients for the independent covariates and δk 
represents the random anesthesiologist effect. It should be 
noted that these parameters were defined on the logit scale. 
Prone is 1 when the patient’s positioning is prone and 0 oth-
erwise; base unit is 1 when the numbers of American Soci-
ety of Anesthesiologists’ Relative Value Guide base units are 
greater than or equal to 11 units and 0 otherwise. The time 
from operating room (OR) entrance until the dressing has 
been placed was divided to two branches in the decision 
tree (fig. 1). However, this variable was used as a continuous 
variable in the actual analyses. Two-times square-root trans-
formation provided the closest to linear relation with the 
logit probability of prolonged tracheal extubation for this 
continuous variable. Therefore, DressTime is the 2 × sqrt 
(time from OR entrance until the dressing has been placed).

Under the exchangeability assumption, anesthesiologists 
are considered to be sampled from a common distribution, 
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namely a Normal distribution with mean of 0 and SD of 
σ. In mathematical notation, this can be written as follows:  
δk ~ Normal (0, σ2).

A prior distribution is “weakly informative” if it is set up 
so that the information it provides is intentionally weaker 
than the available prior knowledge. Weakly informative 
prior distributions were used for the overall mean, μ, and 
the coefficients for the fixed effects, βPr, βBU, βDr, and βPrBU. 
Namely, the prior distribution for the overall mean was 
assumed to have a normal distribution with mean 0 and SD 
2; µ ~ ,Normal 0 22( ). Using units in the probability scale, 
the 95% CI of the overall mean according to this prior dis-
tribution ranges between 2% (inverse logit [0 − 1.96 × 2]) 
and 98% (inverse logit [0 + 1.96 × 2]).

Similarly, prior distributions for binary covariates (Prone 
and Base Unit 11 or greater units vs. less than 11 units) were 
assumed to be normal distribution with mean 0 and SD of 2,  
βi ~ ( , )Normal 0 22 .

Because time from OR entrance until the dressing has 
been placed with the two-times square-root transformation 
was on the continuous scale and has a wider scale, the SD 
of this prior normal distribution was assumed to be 0.1, 
βDr Normal~ , .0 0 12( ). The same prior distribution was used 
for the interaction term: βPrBU Normal~ , .0 0 12( ).

When the prior distribution includes the available 
prior knowledge, it is called an “informative” prior dis-
tribution. An informative inverse-gamma prior distribu-
tion was used for the between-anesthesiologist variance 
of the probability of prolonged time to extubation, 
σ σ2 2: ~ ( , )Inv Gamma− α β , with mean 0.125 and the 
SD 0.05. For this inverse-gamma distribution, the prior 
probability is 95% that any anesthesiologist’s log odds of 
prolonged tracheal extubation lies between 33 and 67%. 
When the intercept term is 0 (µ = 0), the 95% CI for the 
time to tracheal extubation being shorter than 15 min is 
0.2 to 99.8% for this inverse-gamma distribution. For 
more details on how to calculate the 95% CI, see the dis-
sertation by Bayman.17 Values of σ close to 0 represent 
greater homogeneity of anesthesiologists. As a sensitivity 
analysis, a noninformative inverse-gamma prior distribu-
tion was also used for the between-anesthesiologist vari-
ance, σ 2 0 001 0 001~ ( . . )Inv Gamma , −  for adjusted models 
of the anesthesiologists and anesthesia providers.

A.2. Individual Probability
Chaloner and Brant defined outlier as an observation with a 
large random error. The kth anesthesiologist is defined as an 
outlier, in a linear model with normally distributed random 
errors, εi, with mean 0 and variance σ2, if | εi| > mσ for some 
m. The choice of m can be chosen to reflect the fact that the 
prior probability of observing an outlier is small. Given that 
the distributions of εi’s are independent and normally distrib-
uted with mean 0, the prior probability of the kth anesthesi-
ologist being an outlier can be written as follows. The prior 
probability that the kth anesthesiologist has a significantly 

greater (or lower) incidence of prolonged tracheal extubations 
than the other anesthesiologists:

Pr Pr Pr , ε ε εi i im m m m>( ) = >( ) + < −( ) = × −( )2 Φ

where Φ (z) is the standard normal distribution function. 
The prior probability that the kth anesthesiologist is NOT 
an outlier equals: 1 − 2 × Φ (−m).

The prior probability of an anesthesiologist being an 
outlier can be modeled based on the overall (departmen-
tal) probability or the individual probability (see Bayesian 
Outlier Detection Methods). For the individual probability 
situation, the probability of each anesthesiologist being an 
outlier was set to 5%. In this circumstance, m becomes 1.96.

A.3. Overall Probability
As a sensitivity analysis, the prior probability of each 

anesthesiologist being an outlier can be calculated from 
departmental norms. As explained in the above section, the 
prior probability that the kth anesthesiologist is an outlier 
can be written as:

Pr Pr Pr . ε ε εi i im m m m>( ) = >( ) + < −( ) = × −( )2 Φ

The prior probability that the kth anesthesiologist is NOT 
an outlier equals: 1 − 2 × Φ (−m).

There are a total of K anesthesiologists. Under the inde-
pendence assumption of the random error terms, the prior 
probability that none of the K anesthesiologists is an outlier 
can be written as follows:

1 2− −[ ]Φ( ) .m K

The prior probability of not detecting any anesthesiolo-
gist in the department, during the 2 yr, having an outlier 
incidence of prolonged time to extubation should be high 
and is set to 95%. In other words,

1 2 0 95− −[ ] =Φ( ) . .m K

This corresponds to the probability of “at least one 
anesthesiologist in the department during the 2-yr study 
period having a significantly greater incidence of pro-
longed time to extubations than the other anesthesiolo-
gists” being equal to 5%.

The prior probability of one specific anesthesiologist 
k being an outlier, when there are K anesthesiologists, is  
2Φ (−m), where,

m K= + ×( )





−Φ 1 10 5 1
2 0 95. . ./

In our data set for 2 yr, there were 81 anesthesiologists: 
K = 81. Thus, m = 3.42 and the prior probability of each 
anesthesiologist having an outlier incidence of prolonged 
time to extubations is 0.0006. Similarly, there were 116 
anesthesia providers. Therefore, K = 116, m = 3.51, and 
the prior probability of each anesthesia provider having 
an outlier incidence of prolonged time to extubations  
is 0.00044.
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A.4. Sensitivity Analyses
For the original calculations, it was assumed that the between-
anesthesiologist variance in the logit scale has an inverse-
gamma distribution with parameters α = 9 and β = 1. As 
a sensitivity analysis, a noninformative inverse-gamma prior 
distribution was used; specifically inverse-gamma (α = 0.001, 
β = 0.001) as recommended by Spiegelhalter et al.14

A different prior distribution for the overall mean, μ, 
was also examined; µ ~ uniform (−4.595, 4.595) instead of 
µ ~ normal (0, 22). The justification for the uniform prior 
distribution was as follows. The probability of observing a 
prolonged time to extubation varies between 0 and 1. If we 
define this probability between 0.01 and 0.99, the logit of 
this range correspond to −4.595 to 4.595.

When calculations for anesthesiologists and anesthesia 
providers for the adjusted models were repeated for these 
different sets of prior probabilities, same individuals were 
identified as outliers. This shows that our results are insensi-
tive to these two choices of prior distributions of between-
anesthesiologist variance.

A.5. WinBUGS Model for Anesthesiologists, Adjusted Model 
model

{

A	 for (i in 1:27757){
B	 goodoutPE[i] ~ dbern(p[i])

C	 logit(p[i]) <- theta[i]

D	� theta[i] <- mu + beta_Prone*Prone[i] + beta_BU* 
BUGr11[i] + beta_Dr * ORDr[i] + beta_PrBU* 
Prone[i] * BUGr11[i] +delta[anes[i]]

}

E	 for(k in 1:81){

F	 Post.delta.3.42[k] <- step(delta[k] - 3.42*sigma.e) 
+ step(-delta[k] - 3.42*sigma.e)

#m <- qnorm(0.5 + 0.95^(1/81)/2) = 3.42

}

G	 Prob.sum <- sum(Post.delta.3.42[])

H	� Prob.any.g3.42 <- step(Prob.sum -1)

for(j in 1:81){

I	 delta[j] ~ dnorm(0, prec.delta)

}

J	 mu~ dnorm(0, 0.25) # sd = 2

K	 beta_Prone~ dnorm(0, 0.25) # sd = 2

L	 beta_BU~ dnorm(0, 0.25) # sd = 2

M	 beta_Dr~ dnorm(0, 100) # sd = 0.1

N	 beta_PrBU~ dnorm(0, 100) # sd = 0.1

O	 prec.delta ~ dgamma(9, 1)

P	 sd.delta <- 1/sqrt(prec.delta)

}

At A, i refers to the ith of 27,757 anesthetics performed 
in 2 yr.

At B, goodout PE[i] is a binary variable denoted by 1 if 
the time to tracheal extubation is shorter than 15 min and 0 
otherwise. The incidence of time to extubation being shorter 
than 15 min has a Bernoulli distribution with the probability 
of p[i].

At C, the logit transformation is applied to the incidence 
of time to extubation being shorter than 15 min, similar to 
the logistic regression model.

At D, the logit probability of the incidence of time 
to tracheal extubation being less than 15 min is written 
as a function of overall intercept (μ), patients’ position 
(prone vs. not prone), the numbers of American Soci-
ety of Anesthesiologists’ Relative Value Guide base unit  
(11 or greater vs. less than 11), time from OR entrance 
until the dressing has been placed (after two times the 
square-root transformation), and the random anesthesi-
ologist effect (delta[anes(i)]).

At E, k stands for the kth of 81 anesthesiologists that was 
assessed for performance within 2 yr.

At F, the posterior probability of being outlier for 
anesthesiologist k (Post.delta.3.42[k]) was calculated. 
This probability was calculated based on the number of 
anesthesiologists compared and is 81 for this example. 
First, the prior probability of being outlier, m, was cal-
culated (see appendix A.3). The step function was used 
to calculate how many times the random anesthesiolo-
gist effect was more extreme than m. Step(e) returns 1 
if e ≥ 0 and 0 otherwise. When the prior probability for 
each individual set to 5% (see appendix A.3), instead of 
3.42, 1.96 was used.

At G, the sum of posterior probabilities of being outlier 
for all anesthesiologists was calculated.

At H, the posterior probability of at least one anesthesi-
ologist being an outlier (Prob.any.g3.42) was calculated.

At I, a random normal distribution was defined as a prior 
distribution for the random provider effect. WinBUGS used 
the mean and precision to indicate the normal distribution. 
The normal distribution was centered at mean of 0 and the 
SD is 1/ prec.delta .

At J, a prior distribution for the intercept term (μ) was 
defined as a normal distribution with mean 0 and SD of 2.

At K, a prior distribution was defined for the slope of 
patient’s prone position. This is a normal distribution with 
mean 0 and SD of 2 and therefore a weak informative prior 
distribution.

At L, a prior distribution was defined for the slope of the 
numbers of American Society of Anesthesiologists’ Relative 
Value Guide base unit of the anesthetic (11 or greater vs. 
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less than 11). This is a normal distribution with mean 0 and 
SD of 2.

At M, a prior distribution was defined for the slope of 
two times the square-root transformed (Box–Cox trans-
formed) time from OR entrance until the dressing has 
been placed. This is a normal distribution with mean 0 
and SD of 0.1.

At N, a prior distribution was defined for the slope of the 
interaction of Prone and the two times the square-root trans-
formed (Box–Cox transformed) time from OR entrance 
until the dressing has been placed. This is a normal distribu-
tion with mean 0 and SD of 0.1.

At O, as usual for the precision of the normal distribu-
tion (see WinBUGS manual), the prior distribution for the 
precision of the random provider effect was defined as a 
gamma distribution with parameters 9 and 1. The mean of 
this gamma distribution is 9 and it’s SD is 3.

At P, the conversion between the SD (sd.delta) and the 
precision (prec.delta) was defined.

A.6. Details of the Weighted Average Calculation 
The variance of the posterior mean was obtained from 
the Bayesian analyses results. The inverse of the variance 
for each anesthesiologist was used as the weight for that 
anesthesiologist’s random effect. Therefore, a greater weight 
was given to the random effects for those anesthesiologists 
with greater number of extubations.
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