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ABSTRACT

Background: Periodic assessment of performance by anesthesiologists is required by The Joint Commission Ongoing Profes-
sional Performance Evaluation program.
Methods: The metrics used in this study were the (1) measurement of blood pressure and (2) oxygen saturation (Spo2) either 
before or less than 5 min after anesthesia induction. Noncompliance was defined as no measurement within this time inter-
val. The authors assessed the frequency of noncompliance using information from 63,913 cases drawn from the anesthesia 
information management system. To adjust for differences in patient and procedural characteristics, 135 preoperative variables 
were analyzed with decision trees. The retained covariate for the blood pressure metric was patient’s age and, for Spo2 metric, 
was American Society of Anesthesiologist’s physical status, whether the patient was coming from an intensive care unit, and 
whether induction occurred within 5 min of the start of the scheduled workday. A Bayesian hierarchical model, designed to 
identify anesthesiologists as “performance outliers,” after adjustment for covariates, was developed and was compared with 
frequentist methods.
Results: The global incidences of noncompliance (with frequentist 95% CI) were 5.35% (5.17 to 5.53%) for blood pressure 
and 1.22% (1.14 to 1.30%) for Spo2 metrics. By using unadjusted rates and frequentist statistics, it was found that up to 43% 
of anesthesiologists would be deemed noncompliant for the blood pressure metric and 70% of anesthesiologists for the Spo2 
metric. By using Bayesian analyses with covariate adjustment, only 2.44% (1.28 to 3.60%) and 0.00% of the anesthesiologists 
would be deemed “noncompliant” for blood pressure and Spo2, respectively.
Conclusion: Bayesian hierarchical multivariate methodology with covariate adjustment is better suited to faculty monitoring 
than the nonhierarchical frequentist approach. (Anesthesiology 2015; 123:101-15)

What We Already Know about This Topic

•	 Although periodic assessment of anesthesiologists is required 
by some regulatory agencies in the world, there are no broadly 
accepted quality or safety performance metrics in anesthesia

What This Article Tells Us That Is New

•	 Noncompliance with simple blood pressure and oxyhemo-
globin saturation metrics in approximately 70,000 cases at 
the University of Iowa was present in up to 43 and 70% 
of anesthesiologists, respectively, by using frequentist sta-
tistics compared with 2.4 and 0%, respectively, by using a 
Bayesian approach
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Assessing and Comparing Anesthesiologists’ 
Performance on Mandated Metrics Using a Bayesian 
Approach

Emine Ozgur Bayman, Ph.D., Franklin Dexter, M.D., Ph.D., Michael M. Todd, M.D.

T HE Joint Commission, a United States–based hospi-
tal accreditation organization, requires that all licensed 

practitioners (e.g., anesthesiologists) undergo periodic 
Ongoing Professional Practice Evaluation (OPPE). Evalua-
tions must be based, at least in part, on measures of clini-
cal performance and identify providers by name. Results are 
reported to the hospital.

There are two separate issues when comparing the per-
formance of anesthesiologists. One is the determination 
of the mean risk-adjusted incidence of their noncompli-
ance with a chosen metric. This would be appropriate for 
making a comparison between groups and hospitals.1,2 
The second is the determination of outlying individu-
als within the same department. The two issues happen 
at different hierarchical levels. The OPPE requirement 
addresses the second issue.

Anesthesiologists work in different subspecialty areas and 
perform widely differing numbers of cases. A metric appli-
cable to one subset of anesthesiologists within a department 
might be meaningless when applied to another. For example, 
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the incidence of perioperative mortality might be a mean-
ingful outcome measure for anesthesiologists doing cardiac 
surgery, but not for anesthesiologists’ performing sedation 
for gastroenterology. Although Haller et al.1 reviewed 108 
potential measures, they did not assess their utility for the 
OPPE process.

Not only is finding a “one-size fits all” metric difficult, 
so is finding valid analytic methods that avoid the “spurious 
outlier” problem inherent in the face of anesthesiologist-by-
anesthesiologist, patient and procedural, variation. Using 
raw measures of noncompliance (e.g., percentage of a given 
clinician’s anesthetics not meeting the chosen metric) in con-
junction with typical frequentist statistics (e.g., chi-square 
test or funnel plots) may yield misleading comparisons.

Ehrenfeld et al.3 published two OPPE metrics: measure-
ment of blood pressure before induction and use of end-tidal 
carbon dioxide monitoring. They monitored anesthesiolo-
gists and calculated upper one-sided 95% CIs of the overall 
incidences of noncompliance as thresholds. Any anesthesiol-
ogist with an incidence of noncompliance above the thresh-
old was classified as “not passing the metric.” However, they 
did not make adjustments for patient and procedural covari-
ates. They also excluded pediatric cases and anesthesiologists 
who supervised less than 60 anesthetics during the assess-
ment period, inconsistent with The Joint Commission rule 
to include all providers.

We developed a Bayesian hierarchical model to iden-
tify “performance outliers” after adjustment for covariates. 
The inclusion of relevant covariates eliminates the need to 
exclude large numbers of cases (e.g., pediatrics). The Bayesian 
approach is more statistically powerful than the frequentist 
methods when the sample sizes for individual participants 
are heterogeneous and when some are small.4 Therefore, no 
providers are excluded based on their numbers of anesthetics.

The goal of this study was to compare the characteris-
tics and results of different statistical methods used to detect 
those anesthesiologists who might be judged as “outliers,” 
with and without efforts to take into account different 
patient and subspecialty characteristics. We evaluated the 
influence of risk adjustment for each metric on results and 
compared our Bayesian methods to Ehrenfeld’s frequentist-
observed percentage with no covariate adjustment.

Materials and Methods
The Human Subject Research Determination form submit-
ted to the University of Iowa Institutional Review Board 
(Iowa City, Iowa) was determined that this retrospective qual-
ity assurance project concerns primarily clinical activities and 
does not meet the regulatory definition of human subjects 
research (see table 1, Supplemental Digital Content 1, http://
links.lww.com/ALN/B145, for the details of the structured 
query language logic to create the analyzed dataset).

We began with information from 79,327 anesthet-
ics extracted from the University of Iowa’s Epic (Epic Sys-
tems, Inc., USA) anesthesia information management 

system (AIMS) (appendix, Anesthesia Medical System Time 
Stamps), starting shortly after Epic “Go-Live” (November 
16, 2010) and extending through June 30, 2013. We then 
focused on general anesthetics that were initiated with one 
of the five different agents: propofol, etomidate, sevoflurane, 
desflurane, and rocuronium. Isoflurane was not included 
because for no case was it the first agent used (i.e., its use 
was always preceded by one of the above noted medications). 
Desflurane and rocuronium were included because the study 
included patients who were already intubated and sedated 
and transported from an intensive care unit (ICU) to the 
operating rooms (ORs), and these two agents were some-
times the first given in the OR. This resulted in a dataset of 
68,220 cases (see table 1, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B145, which lists the structured 
query language logic to obtain 68,220 cases). Preoperative 
and procedural information from these cases were used to 
develop covariates for subsequent analyses (see sections Blood 
Pressure Metric—Selection of Covariates and pulse oxim-
etry measured oxygen saturation (Spo2) Metric—Selection 
of Covariates). For performance assessments, five sequential, 
6-month periods were used, beginning with January 2011 
through June 2011 and ending with January 2013 through 
June 2013. The 6-month periods were used because this is 
an accepted interval for periodic OPPE assessments (assess-
ments must be more frequent than once-per-year).

Our Bayesian method works fully for all providers (i.e., for 
our local quality improvement, all providers are included). 
However, in our analyses for this article, in order for an anes-
thesiologist to be included in the performance assessment for 
a period, the anesthesiologist being assessed had to be work-
ing for the department during that entire 6-month period. 
We did this to provide scientific results in this article that 
are generalizable to other institutions. The number of anes-
thesiologists doing hardly any cases for a 6-month period 
would not apply elsewhere. The effect of this was to reduce 
the sample size for performance analyses to 63,913 general 
anesthetics.

To assess and compare the performances of anesthesi-
ologists, two metrics were chosen. The criteria in choosing 
the metrics were that each should (1) apply to all anesthe-
siologists performing general anesthetics in the department; 
(2) be measured objectively; and (3) be present in our Epic 
AIMS to permit ready extraction every 6 months. The met-
rics chosen were (1) the time of the first recorded arterial or 
noninvasive blood pressure (NIBP) in relation to the time 
of induction3,5 and (2) the time of the first recorded Spo2 
in relation to induction (see section Definition of “Time of 
Induction” for more information). For an anesthesiologist 
to be deemed compliant, these values needed to be recorded 
either before or coincident with the first appearance of any 
of the five aforementioned medications (defined as the start 
of induction). Because, for more than half of the records, 
the first induction dose was propofol, and because the time 
of propofol administration was not recorded automatically 
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(i.e., it was manually entered and may have been measured 
with error), we chose to more specifically define the “com-
pliant” interval as extending until less than 5 min after first 
drug administration. If the first blood pressure/Spo2 record-
ing was 5 min or greater after induction, the anesthesiologist 
in that case was deemed noncompliant.

Blood Pressure Metric: NIBP or Arterial Blood Pressure
The earliest recording of any NIBP after the start of continu-
ous anesthesia presence (anesthesia start time) was used. If 
the patient had an arterial blood pressure measurement that 
preceded the NIBP, then the first arterial blood pressure time 
after the anesthesia start time was used. Arterial blood pressures 
were excluded when not physiologically plausible (e.g., flushing 
the arterial line catheter), defined as systolic blood pressure less 
than 50 mmHg, systolic greater than 230 mmHg, diastolic less 
than 30 mmHg, or diastolic greater than 140 mmHg.

Most of the monitors used to measure blood pressure dur-
ing an anesthetic were recorded automatically in Epic. How-
ever, when an ICU patient was transported to the OR, blood 
pressure may have been displayed on a transport monitor but 
not recorded in Epic. Ehrenfeld et al.3 addressed this issue 
by excluding any case for which the patient came from an 
ICU (personal written communication with Jesse Ehrenfeld, 
M.D., M.P.H., Associate Professor, Department of Anesthe-
siology, Vanderbilt University, Nashville, Tennessee, July 25, 
2013).3 We did not do this, for two reasons. First, the inci-
dence of blood pressure noncompliance for patients coming 
from the ICU (n = 2,274) was not substantially greater than 
for all other patients (9.45 vs. 5.32%), and we wished to 
include as many patients (and hence providers) as possible 
in our analysis. Second, and most importantly, this is a sys-
tems-based issue with the electronic medical record. Chart-
ing is the responsibility of the patient care team, regardless of 
whether it is recorded automatically or manually. Therefore, 
rather than deleting these cases, we included the origination 
of the patient (from ICU) in the adjusted analysis.

Ehrenfeld et al.3 also excluded 35% (46 of 128) of anes-
thesiologists because they performed fewer than 60 general 
anesthetics during the studied period. Fewer of our anes-
thesiologists would have been excluded (4 of 56, 7.1%), 
but because the Bayesian method is not influenced by the 
number of anesthetics performed, we included all anesthe-
siologists regardless of the number of general anesthetics 
performed during the studied 6-month period, as long as 
the anesthesiologist worked for the department during that 
entire 6-month period. This meets the OPPE mandate.

Definition of “Time of Induction”
For intravenous drugs, the time of induction was considered 
the earliest recorded time of administration after the anes-
thesia start time.

For propofol, etomidate, and/or rocuronium, an induc-
tion dose exceeding chosen thresholds was used. The thresh-
old for propofol was 0.125 mg/kg, chosen to be greater than 

the typical ICU sedation dose of 25 μg kg−1 min−1 × 5 min. As 
this was approximately 20% of a typical induction dose, the 
(approximate) corresponding criteria applied were 0.06 mg/kg 
for etomidate and 0.12 mg/kg for rocuronium. The total dose 
over 5 min was used when there was more than one dose or an 
infusion. An example is provided in the appendix (Examples 
of Calculating the Total Dose of Propofol).

For the volatile anesthetics (sevoflurane or desflurane), 
the first time after the anesthesia start time when the end-
tidal percentage concentration automatically exceeded a 
threshold was recorded. Thresholds used were 0.2 times the 
minimum alveolar concentration, that is, 0.42% for sevoflu-
rane and 1% for desflurane. The reason for using threshold 
values for end-tidal concentrations was that residual subhyp-
notic concentrations from previous anesthetics in the OR 
on the same day frequently “bled over” into a subsequent 
case, potentially resulting in an erroneous induction time 
(appendix, Using Thresholds for End-tidal Concentrations).

Blood Pressure Metric—Selection of Covariates
We started with a dataset consisting of all the preoperative 
characteristics available in the AIMS for the 68,220 patients 
receiving general anesthesia during the November 2010 
through June 2013 period (tables 1–3, Supplemental Digi-
tal Content 1, http://links.lww.com/ALN/B145, 135 vari-
ables). Classification tree analyses were then performed by 
using SAS Enterprise Miner 7.1 (SAS Institute, Inc., USA). 
Models were compared based on the mean squared error. 
The classification/decision tree analyses created a hierarchy 
of branches.6 Each variable was divided into as many as three 
branches. Each variable was used only once in the decision 
tree. For these analyses, a single dataset including the data 
from the entire period was used instead of five datasets from 
each of the 6-month periods.

The use of age in the model reduced the mean squared 
error more than the use of any of the other 134 variables (see 
tables 2 and 3, Supplemental Digital Content 1, http://links.
lww.com/ALN/B145). Once age was included, adding none 
of the other 134 variables meaningfully reduced the mean 
squared error (reduction on the mean squared error for each 
other variable ≤0.25%).

The three age categories selected automatically by SAS 
Enterprise Miner were (1) age less than 7 yr and 3 months; 
(2) age between 7 yr and 3 months and 12 yr and 9 months; 
and (3) age 12 yr and 9 months or older (fig. 1). As shown 
in this figure, blood pressure was not checked within 5 min 
after induction for 5.32% of the 68,200 general anesthet-
ics. The incidence of noncompliance was the greatest for 
the youngest age group (i.e., principally for pediatric anes-
thesiologists) (fig.  2). Because pediatric anesthesiologists 
often induce anesthesia in their youngest patients with 
volatile agents before placing monitors, this observation was 
expected, suggesting that our methods are valid.

The Bayesian method uses logistic regression models. 
Knowing the model variable from the SAS Enterprise 
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Miner, Box-Cox transformation was used to determine 
the best transformation for age as a continuous variable to 
satisfy the assumption of a linear relation between trans-
formed age and the logit. The transformation used was 
two times the square root of age. The mean squared error 
for the blood pressure metric with age as the covariate 
was 0.0468. To evaluate, further, whether any of the other 
134 variables individually should also be used for covari-
ate adjustment, logistic regression models were fit, and 
the increases in the area under the curve versus from age 
alone were calculated. It was verified that the model with 
age was as good as any other model with any additional 
variable. The increases in the area under the curve, after 
the inclusion of other variables in addition to age, were all 
less than 0.6% absolute value. Since both mean squared 
error from the classification tree analyses and area under 
the curve statistics from the logistic regression models 
indicated that no candidate variable made a meaningful 
change in the model, patient’s age (continuous variable 
with the square-root transformation) was the only char-
acteristic that was used in the Bayesian model for absence 
of checking the blood pressure within 5 min of the induc-
tion of general anesthesia.

Finally, Bayesian hierarchical generalized linear models 
were fit, adjusting for the patient’s age within each of five 
6-month periods. In the Bayesian model, patient’s age, along 
with the random anesthesiologist effect, was included.

Spo2 Metric—Selection of Covariates
Similar steps were followed for Spo2. Significant covari-
ates detected by the classification tree analyses were the 
American Society of Anesthesiologists (ASA) physical sta-
tus score (1 to 3 vs. 4 to 6), whether the patient was com-
ing from the ICU, and whether the case was a first start 
of the workday, all binary variables (fig. 3). The case was 

considered a first start when the time from the start of 
the surgical day to induction was 5 min or less. Note that 
“the time from the start of the surgical day” was entered 
as a continuous variable in the analyses for the decision 
tree. SAS Enterprise Miner broke down this variable as a 
binary covariate.

There were 35 patients with ASA physical status 6 (brain 
dead), and they were included in the analyses.

The “From ICU” variable reports if the preceding loca-
tion before the patient was in an OR was an ICU. Locations 
considered ICUs were the hospital’s cardiovascular ICU, 
emergency medicine department, medical ICU, neonatal 
ICU, pediatric ICU, and the surgical and neuroscience ICU.

As displayed in the decision tree of figure 3, patients 
with ASA physical scores 4, 5, or 6 appear not to have 
had their Spo2 checked before or within 5 min after induc-
tion more often than for patients with lesser ASA scores 
(5.40 vs. 1.09%, respectively). Similarly, the Spo2 appears 
not to have been checked before induction more often for 
those patients coming from an ICU (7.77 vs. 4.43%). The 
sicker patients (ASA ≥4) coming from the ICU did so on 
transport monitors and sometimes the anesthesia provider 
did not enter the information into the electronic medical 
record (again, as described in section Blood Pressure Met-
ric—Selection of Covariates). These patients were included 
in our study because these are precisely the patients for 
whom hypotension and/or hypoxemia may influence 
patient outcome. However, by including these variables in 
the risk adjustment, each anesthesiologist’s behavior was 
compared with other anesthesiologists addressing the same 
systems-based issues.

Frequentist Outlier Detection Methods
The method described in the study by Ehrenfeld et al.3 was 
used to identify outlier anesthesiologists. Ehrenfeld et al.3 
calculated a compliance threshold as an upper 95% CI of 
the overall incidence of noncompliance—and considered 
providers whose performance was beyond this CI as being 
“noncompliant.” We calculated this frequentist thresh-
old based on the data from a single dataset including the 
data from all 2.5 yr and then applied it to each of the five 
6-month intervals.

Bayesian Outlier Detection Methods
The method described in the study by Chaloner and Brant7 
and Bayman et al.8 was used to identify outliers. The 
method8 was developed to detect outliers among centers 
in multicenter clinical trials. In the current study, they are 
applied to detect anesthesiologists with outlier behavior. 
Each anesthetic was attributed to the single anesthesiolo-
gist assigned in the electronic medical record at the time 
of the induction drug administration. The hierarchical 
model is especially appropriate here because the anesthet-
ics are nested within the anesthesiologists, and the model 
takes into account patient and procedure characteristics 

Fig. 1. Decision tree model for the blood pressure (BP)  
outcome. Ehrenfeld et al.3 retrospectively studied the electronic 
anesthesia records of patients for the purpose of prolonged 
blood pressure gaps in anesthesia records. m = months;  
y = years.
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(see sections Blood Pressure Metric—Selection of Covari-
ates and Spo2 Metric—Selection of Covariates).

Bayesian hierarchical generalized linear models were fit for 
each metric. Anesthesiologists were assumed to be perform-
ing similarly but not identical to one another: exchangeable.9 
In statistical modeling terms, this means that it was assumed 
that the anesthesiologists’ performances were randomly 
sampled from the same normal distribution. Details of the 
model are given in the appendix (The Bayesian Model).

In Bayesian analysis, unknown parameters are random 
variables and, therefore, prior probability distributions 

should be defined. The Bayesian model combines the prior 
distribution with data and produces a posterior distribution. 
Inferences are made from the posterior distribution.

Two different prior probabilities were examined for an 
anesthesiologist having a significantly greater incidence of 
blood pressure (or Spo2) noncompliance than the other anes-
thesiologists during the each of five 6-month periods. (1) The 
prior probability of each anesthesiologist having a significantly 
greater incidence of blood pressure (or Spo2) noncompliance 
than the other anesthesiologists was set to 0.05 (appendix, 
Individual Prior Probability). (2) The prior probability of at 

Fig. 2. Dotplot for January 2013 through June 2013 for the blood pressure metric for three age groups. Data from January 2013 
through June 2013 for the blood pressure metric are presented in figure 2 for each age group from SAS Enterprise Miner (SAS 
Institute, Inc., USA; fig. 1). Only those anesthesiologists with 25 or more anesthetics in the 6-month period for each age group 
were plotted. Therefore, even though there were 57 anesthesiologists studied in this period, the number of dots in A and B would 
be less than 57. The incidences of noncompliance were 19.96% for the youngest age group (A) and 2.13% for those patients in 
the oldest age group (C) in this period. The figure shows that the incidences of not checking (or recording) blood pressure before 
induction were substantial for the two Bayesian outlier anesthesiologists without risk adjustment (green triangle), especially for 
the middle and oldest age groups. The figure shows also that neither of the two anesthesiologists who was a Bayesian outlier 
with covariate adjustment (red squares) shows up on A nor on B, indicating that these anesthesiologists performed less than 25 
anesthetics for these age groups during the 6-month period. Adj = adjusted; Unadj = unadjusted.
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least one anesthesiologist in the department during each stud-
ied 6-month period having a significantly greater incidence of 
blood pressure (or Spo2) noncompliance than the other anes-
thesiologists was set to 0.05. Under the second setting, for 57 
anesthesiologists in the department January 2013 through June 
2013, the prior probability of each anesthesiologist being an 
outlier becomes 0.0009 (appendix, Overall Prior Probability).

Prior distributions used for the overall mean and the coef-
ficients for the fixed effects (i.e., patient age and whether the 
patient is coming from an ICU) were assumed to follow nor-
mal distributions as is typical for these types of analyses. The 
parameters of these prior distributions were set for them to be 
weakly informative (have very large SDs)10 (for statistical details 
and explanations of the WinBUGS model, see the appendix, 
Adjusted WinBUGS Model for Blood Pressure Outcome - Indi-
vidual Probability). Analyses were repeated using different prior 
distributions as sensitivity analyses. Random prior distributions 
were defined for each anesthesiologist. For each anesthesiologist, 
posterior probabilities of having a significantly greater incidence 
of blood pressure (or Spo2) noncompliance (compared with the 
other anesthesiologists) were calculated, and the strength of evi-
dence was quantified by the Bayes factor (BF).9

The BF is the ratio of the posterior odds in favor of the 
null to the prior odds of the null.4 The most common inter-
pretation of BF is that it classifies evidence against the null 

hypothesis. The evidence is considered “strong,” “very strong,” 
and “decisive” when the BF is less than 10−1, 10−1.5, and 10−2, 
respectively, according to Jeffrey scale.9 Kass and Raftery11 rec-
ommend a more conservative interpretation of BF. According 
to Kass and Raftery, BFs less than 0.33, 0.05, and 0.0067 are 
classified as “positive,” “strong,” and “very strong” evidence 
against the null hypothesis.11 With both scales, BF greater 
than 1 provides the evidence for the null hypothesis.

A BF less than 0.1 indicates “strong” evidence according to 
the Jeffrey scale9 and was used as the criterion for an outlier in 
our study. The direction of the outlier (e.g., greater or lesser inci-
dence of blood pressure [or Spo2] noncompliance than the other 
anesthesiologists) was determined by the sign of the random 
effect term corresponding to the anesthesiologist. A negative δk 
indicated that the kth anesthesiologist had a greater incidence of 
noncompliance relative to the other anesthesiologists.

Overall standard errors (SEs) of the incidences of blood 
pressure (or Spo2) first checked 5 min or more after induc-
tion were calculated treating each of the periods as point 
estimates. This was because the same anesthesiologists were 
tested among periods.12 The numerator and denominator for 
each period were used in the Freeman–Tukey transforma-
tion.12 Student t distribution was used to calculate the CI and 
P value of the transformed values.12 By using the harmonic 
mean number of anesthesiologists per period, incidences 
were back-transformed to the percentage incidences.13 The 
SE was then calculated as the CI width divided by (2 × 1.96), 
the 1.96 being the inverse of the standard normal distribu-
tion. Coverage is accurate,12 and the incidences and associ-
ated SEs are reported in the probability (percentage) scale. 
Along with the incidences of blood pressure and Spo2 first 
checked ≥5 min after induction, 95% CIs were also provided.

Basic data analyses were performed by using the SAS 
software 9.3 (SAS Institute, Inc.). Classification tree analy-
ses were performed by using SAS Enterprise Miner software 
7.1. Plots were created using SigmaPlot version 12.5 (Systat 
Software, USA). Bayesian analysis were performed by using 
the WinBUGS 1.4.3 software (Imperial College and Medi-
cal Research Council, United Kingdom).14

WinBUGS uses Markov chain Monte Carlo methods. To 
represent the extreme regions of the parameter space, three 
parallel chains of equal lengths with disperse initial values 
were used in WinBUGS analyses. Convergence was judged 
by Brooks, Gelman, and Rubin diagnostics plots,15 density 
and history plots, and autocorrelations. Bayesian results were 
based on 5,000 iterations after a burn-in period of 5,000 
iterations in each chain.

Reporting Of Bayes Used in clinical STudies (ROBUST) 
guidelines was followed to report Bayesian analyses in this 
study.16

Results
Descriptive statistics are provided in table 1 for those vari-
ables used in one or more models for 68,220 general anes-
thetics. Descriptive statistics for those variables not used in 

Fig. 3. Decision tree for the pulse oximetry measured oxy-
gen saturation (Spo2) outcome. Percentages (%) in paren-
theses indicate the incidences of Spo2 first checked more 
than 5 min after the induction. For example, for 65,386 pa-
tients with American Society of Anesthesiologist’s physical 
status (ASA PS) 1 to 3, Spo2 was first checked more than 
5 min after the induction 1.09% of the time. Among the an-
esthetics represented in the figure, there are data for 2,629, 
169, and 35 anesthetics with American Society of Anesthe-
siologists physical status 4, 5, and 6, respectively. Start of 
the day is a binary variable indicating if the time from the 
start of the surgical day to induction were ≤5 min versus 
>5 min. At the University of Iowa, the surgical day starts at 
8:00 am on Monday and Tuesday and at 7:15 am on Wednes-
day, Thursday, and Friday. The “From ICU” variable reports 
if the preceding location before the patient was in an oper-
ating room was an intensive care unit (ICU). This includes 
the cardiovascular ICU, medical ICU, neonatal ICU, pediat-
ric ICU, and surgical and neuroscience intensive care.
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models, based on lack of predictive value, are presented in 
tables 2 and 3, Supplemental Digital Content 1, http://links.
lww.com/ALN/B145.

Blood Pressure Outcome
The unadjusted overall incidence of noncompliance for all 
63,913 cases from all five periods for the blood pressure met-
ric was 5.35% (95% CI, 5.17 to 5.52%). Summary results, 
incidences of noncompliance, and the number of anesthe-
siologists for each of the five 6-month periods are given in 
table 2 for blood pressure metric.

As summarized in the introduction, Ehrenfeld et al.’s3 fre-
quentist method uses the raw observed percentages for each 
anesthesiologist, without any covariate adjustment. Follow-
ing their method, the upper 95% one-sided confidence limit 
(5.49%) was calculated for the overall (departmental) inci-
dence of noncompliance. Based on this, 28.52% (18.68 to 
38.36%) of the anesthesiologists in our department would 
be identified as noncompliant outliers (23 of 53, 14 of 56, 
13 of 55, 16 of 59, and 14 of 57 in each of the five periods, 
respectively). Among the nine anesthesiologists each with at 
least 50% of their cases being pediatric (age <13 yr), all were 
frequentist outliers for at least four of five periods. Seven of 
these anesthesiologists were frequentist outliers for all five 
periods.

Applying the Bayesian analyses, 4.24% (3.18 to 5.30%) 
of anesthesiologists were outliers without adjustment for 
patients’ ages. For example, anesthesiologist 3 (the anesthe-
siologist with the third greatest number of cases during the 
whole 2.5 yr) was detected as having a significantly greater 
incidence of blood pressure noncompliance than the other 
anesthesiologists in all five periods (table 2). The random 
chance of detecting this anesthesiologist as an outlier in all 
five periods was miniscule (1.82 × 10−9). The fact that the 
same anesthesiologist was detected during different periods 
suggests the reliability of the Bayesian method.

Figure  4 shows an example of the process for a single 
6-month period: January through June 2013. In this period, 
there were 14 anesthesiologists who had a significantly 
greater incidence of blood pressure noncompliance than the 
other anesthesiologists according to Ehrenfeld’s frequentist 
model. In contrast, there were only two anesthesiologists 
who were outliers by the unadjusted Bayesian model. These 
two outlier anesthesiologists are represented by the right-
most solid green triangles (12.18 ± 1.65% and 18.96 ± 1.92% 
incidences of noncompliance in this period). The posterior 
probabilities for these two anesthesiologists each being an 
outlier were 53 and 99%, respectively.

When the Bayesian model was adjusted for the covariate 
of age, 2.44% (1.28 to 3.60%) of the anesthesiologists were 
detected as outliers. In the January 2013 through June 2013 
period, the incidences of noncompliance of the two anesthe-
siologists with a significantly greater incidence of noncom-
pliance than all other anesthesiologists (red squares in fig. 4) 
were 6.53 and 8.54%, respectively, for the covariate-adjusted 
model (table 2). The posterior probabilities for these two 
anesthesiologists each being an outlier were increased from 
5% to 10% and to 73%, respectively. Although the inci-
dences of outliers between the adjusted and unadjusted 
Bayesian models were not significantly different, covariate 
adjustment was important because these are different anes-
thesiologists (i.e., the outliers without adjustment were not 
the same as those identified with adjustment) (table 2 and 
fig. 4).

Spo2 Outcome
The overall incidence of noncompliance for the Spo2 metric 
was 1.22% (95% CI, 1.14 to 1.30%) (table 3). If an anes-
thesiologist had an incidence of Spo2 measurement within 
5 min of induction that was greater than the upper 95% CI 
of overall incidence of noncompliance (1.29%), the anes-
thesiologist was judged as “noncompliant.” Using Ehrenfeld 

Table 1.  Descriptive Statistics for Variables Used in One or Both of the Models (n = 68,220)

Variable Mean ± SD Median (Q25, Q75)

Blood pressure latency (minutes from first induction agent to first 
blood pressure)

−3.77 ± 87.62 −1.0 (−5.0, 1.0)

Spo2 latency (minutes from first induction agent to 
first blood pressure)

−5.54 ± 78.25 −3.0 (−6.0, −1.0)

Case start latency (hours from the start of the 
surgical day to the time of induction)

3.74 ± 3.93 3.0 (0.37, 5.62)

Patient’s age (yr) 41.70 ± 23.56 45.97 (22.0, 60.0)

American Society of Anesthesiologists physical status score % N

 � 1 22.47 15,327
 � 2 47.00 32,066
 � 3 25.80 17,600
 � 4 3.85 2,629
 � 5 0.25 169
 � 6 0.05 36
 � Missing 0.58 393

Spo2 = pulse oximetry measured oxygen saturation.
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et al.’s method3 for Spo2, 40.20% (17.90 to 62.51%) of 
our anesthesiologists were detected as outliers (table 3). For 
example, the blue hexagons in figure 5 represent the 19 anes-
thesiologists who were frequentist outliers for the Spo2 met-
ric during the July 2011 through December 2011 period. In 
contrast, when the Bayesian model was used without adjust-
ing for covariates, only one anesthesiologist (23) was deemed 
to be noncompliant and for just one period (0.11%). The 
posterior probability for this anesthesiologist being an out-
lier was increased from 5 to 35%. When the Bayesian model 
was adjusted for its covariates, none of the anesthesiologists 
had a significantly greater incidence of Spo2 noncompliance 
than the others (table 3).

Sensitivity Analyses
For the results presented up to this point, the prior prob-
ability of each anesthesiologist having a significantly greater 
incidence of blood pressure or Spo2 noncompliance than 
the other anesthesiologists was set to 5.0%. A sensitivity 
analysis was performed, with the prior probability of at least 
one anesthesiologist in the department during the studied 
6-month period having a significantly greater incidence of 
blood pressure (or Spo2) first checked 5 min or more after 
induction than the other anesthesiologists (tables 4 and 5, 

Supplemental Digital Content 1, http://links.lww.com/
ALN/B145). For the blood pressure metric, fewer anesthesi-
ologists were detected as outliers (pairwise differences 2.05% 
[−0.61 to 4.72%] for the unadjusted model and 2.10% 
[1.22 to 2.98%] for the adjusted model). For the Spo2 met-
ric, more were detected (0.11% [0.07 to 0.15%] for both 
unadjusted and adjusted models).

Discussion
Bayesian hierarchical outlier detection methods that take into 
account patient and practice characteristics provided more reli-
able and valid performance assessments for OPPE compared 
with those methods assessing raw incidence of compliance.

Comparison with the Frequentist Approach
The use of SAS Enterprise Miner enabled us to screen 135 
potential covariates to learn what was important for our 
department. The methodology was an effective screening 
tool. However, the decision trees for our department are 
unlikely suitable for other departments. In other words, 
the “result” is the process, not the decision tree itself. We 
expected age to be a covariate for the blood pressure met-
ric (e.g., sevoflurane induction in a child with ASA physical 
status 1 for myringotomy tube placement followed by place-
ment of the blood pressure cuff). However, the fact that no 
other variable was an important covariate was a surprise.

As we used decision trees, thresholds were not used for 
end-tidal concentrations (e.g., >1% desflurane). The results 
were implausible clinically, and, from this, we recognized 
that there were residual subhypnotic amounts of agents 
present from the preceding case. Because we were analyzing 
135 variables, 68,220 records, and hundreds of minutes of 
records, identifying this uncommon effect would otherwise 
have been challenging.

Figure 3 provides another example for why decision trees 
were useful, but our specific model should not be applied 
directly to other departments. At our hospital, transport 
monitor data were not automatically uploaded into the elec-
tronic medical record. The vital signs needed to be entered 
manually after transport had been completed. Our results 
made no differentiation based on when the vital signs were 
entered. This is a system-based informatics problem. Other 
hospitals are likely to have their own unique system-based 
challenges. Our generalizable result is the usefulness of the 
classification tree methodology to determine the depart-
ment-specific covariates.

The two particular endpoints of our study used a thresh-
old of 5 min. This choice is conservative, as it indicates that 
the patient did not have an Spo2 checked until at least 5 min 
after recorded induction. This may also be a charting prob-
lem, but if so, it does reflect a responsibility of the supervis-
ing anesthesiologist.

Ehrenfeld et al.3 used the same blood pressure metric, 
and, to take into account the patient’s age, they excluded 

Fig. 4. Dotplot for January 2013 through June 2013 for the 
blood pressure metric. The blue hexagons represent the 
anesthesiologists with a significantly greater incidence of 
blood pressure first checked ≥5 min after induction than the 
other anesthesiologists based on the criteria of Ehrenfeld 
et al., without covariate and multiple comparison adjust-
ment, as published by Ehrenfeld et al.3 The green triangle 
shows the two anesthesiologists who were outliers when 
the Bayesian method was applied without covariate adjust-
ment. The red squares show the two anesthesiologists who 
were outliers when the Bayesian method was applied with 
covariate adjustment. These four anesthesiologists are also 
frequentist outliers, which is why their symbols also include 
some blue. Note that, there are nine anesthesiologists with 
noncompliance rates of 0%, compliance rates of 100%, for 
the blood pressure metric in this period. Adj = adjusted;  
Unadj = unadjusted.
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pediatric cases. Entirely excluding a class of patients is not 
covariate adjustment. Our results show that, for a metric 
such as Spo2, excluding all cases coming from an ICU and 
all the first case starts would result in inaccurate identifica-
tion of the anesthesiologists not meeting the desired per-
forming standard. In addition, Ehrenfeld et al.’s3 frequentist 
approach excluded anesthesiologists performing few anes-
thetics (e.g., 35% excluded by Ehrenfeld et al., see Materials 
and Methods). Because OPPE by definition is to be applied 
to all anesthesiologists in a department, we need methods for 
risk adjustment that function without excluding classes of 
patients and/or anesthesiologists (see first section of Materi-
als and Methods).

We used a random effects model to represent heteroge-
neity among anesthesiologists. Because of the preassump-
tion that anesthesiologists are performing similar to each 
other in the Bayesian hierarchical model, those anesthesiol-
ogists with much greater or lesser incidence of noncompli-
ance compared with the other anesthesiologists were shrunk 
toward the overall mean. This implies that, if an anesthe-
siologist was detected as an outlier based on the Bayesian 
analysis, the anesthesiologist’s performance should truly be 
outlying. Due to the shrinkage toward the overall mean, it 
is hard to detect an anesthesiologist with few cases as an out-
lier with the Bayesian method. However, with the Ehrenfeld 
et al.’s3 approach, the anesthesiologists with few cases are 
not even analyzed.

Ehrenfeld et al.3 used frequentist outlier detection with-
out covariate adjustment. We used the decision tree for the 
blood pressure outcome (fig. 1) to show that adding covari-
ate adjustment to the frequentist analysis would not substan-
tively address the weaknesses of the approach. We started by 
deleting the group of patients with the greatest incidence 
of the blood pressure not being checked within 5 min after 
induction (i.e., children <7 yr and 3 months). When this age 
group was deleted, the incidence of noncompliance among 
the remaining cases was 3.14% (1,876 of 59,689). Apply-
ing the frequentist analysis, anesthesiologists are detected as 
outliers if they have an incidence greater than the 95% upper 
confidence limit for the overall incidence. This condition 
was satisfied by 43.86% (25 of 57) of our department’s anes-
thesiologists during the January through June 2013 period. 
This result demonstrates that using frequentist analyses with 
covariate adjustment is not a useful tool for assessing anes-
thesiologists’ performance as outlier versus not outlier.

Mathematically, it may seem a substantial leap in com-
plexity to go from Ehrenfeld et al.’s3 simple method (based 
on observed incidence of noncompliance with no covariate 
adjustment and no multiple comparisons adjustment) to a 
Bayesian logistic regression model (with adjusted covariates 
chosen using data mining). However, there are no methods 
that mathematically are “in between,” and what methods 
are available are not simpler to perform. In sequence, covari-
ates need to be chosen with interactions while incorporating 

Table 2.  Summary Results for Each 6-month Period for the Blood Pressure Metric with the Prior Probability Set to 0.05

January 2011 to 
June 2011

July 2011 to  
December 2011

January 2012 to 
June 2012

July 2012 to  
December 2012

January 2013 to  
June 2013

Number of anesthetics 
evaluated

11,799 13,392 13,408 13,571 11,743

Number of evaluated 
anesthesiologists 
supervising at least 
one anesthetic

53 56 55 59 57

Number of anesthetics 
per anesthesiologist, 
median (range)

207 (11–574) 220 (3–546) 212 (11–548) 201 (16–515) 181 (15–422)

Incidence of evaluated 
anesthetics with 
blood pressure 
noncompliance n (%)

761 (6.45%) 728 (5.4%) 717 (5.3%) 666 (4.9%) 545 (4.6%)

Anesthesiologists identified as performance outliers
 � Frequentist n = 23 n = 14 n = 13 n = 16 n = 14
 � Bayesian unadjusted 

(anesthesiologist 
identifier)

n = 2  
(3, 49)

n = 3  
(3, 20, and 38)

n = 2  
(3 and 38)

n = 3  
(1, 3, and 25)

n = 2  
(1 and 3)

 � Bayesian adjusted 
(anesthesiologist 
identifier)

n = 1  
(3)

n = 2  
(3 and 38)

n = 1  
(38)

n = 1  
(25)

n = 2  
(10 and 52)

The unadjusted overall incidence of noncompliance for all 63,913 patients from all five periods for the blood pressure metric was 5.35% (95% CI, 5.17–
5.52%) (3,417 of 63,913). Anesthesiologists were labeled according to their number of anesthetics during the whole 2.5-yr period. For example, anesthe-
siologist 1 performed the most number of anesthetics and anesthesiologist 2 is the second most in anesthetics. The adjusted model includes the patient’s 
age. In this table, the prior probability of each anesthesiologist having a significantly greater incidence of blood pressure noncompliance than the other 
anesthesiologists was set to 0.05. For example, the last column represents results from January 2013 through June 2013 for the blood pressure outcome. 
In that period, 57 anesthesiologists performed 11,743 general anesthetics. The number of anesthetics per anesthesiologist ranged between 15 and 422. 
The incidence of noncompliance for checking blood pressure within 5 min after induction in this period was 4.6%. Cochran–Armitage test of trend indicates 
reducing raw incidences of noncompliance over time (P < 0.0001).
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incidences of the covariates (fig. 3). That is a regression tree. 
The logical alternative approach to use would be neural net-
works. They are (most assuredly) not simpler to use. Next, 
we used a risk-adjusted Bayesian model. A frequentist logistic 
regression model could be used, instead, but that would not be 
the logistic regression of basic statistical packages because such 
packages do not include the random anesthesiologist effect.

Sensitivity Analyses
The incidence of overall noncompliance for the Spo2 metric 
(1.22 ± 0.04%) was much lower compared with the blood 
pressure metric (5.35 ± 0.09%). Because compliance rates for 
each anesthesiologist were high and closer to each other for 
the Spo2 metric, the variances of the random anesthesiolo-
gist effects for the Spo2 metric were less compared with the 
variance for the of the random anesthesiologist effects for 
the blood pressure metric for both adjusted and unadjusted 
model. As explained in the Materials and Methods section, 
for each anesthesiologist, setting the individual prior prob-
ability to 0.05 is a greater prior probability compared with 
setting the prior probability for overall departmental prob-
abilities. Having a smaller variance for the Spo2 metric in the 
data and having a smaller probability with the overall depart-
mental prior distribution together led to having a smaller 
variance for the overall departmental prior distribution situ-
ation compared with the individual probability. Therefore, 
slightly more (0.11 [0.07 to 0.15]) individuals were detected 
as outliers for the Spo2 metric when the overall departmental 
probabilities were used.

Fig. 5. Dotplot for July 2011 through December 2011 for 
the pulse oximetry measured oxygen saturation (Spo2) 
metric. The blue hexagons represent the anesthesiolo-
gists with a significantly greater incidence of Spo2 first 
checked ≥5 min after induction than the other anesthesi-
ologists based on the criteria of Ehrenfeld et al.,3 without 
covariate and multiple comparison adjustment. The green 
triangle shows the single anesthesiologist who was an out-
lier when the Bayesian method was applied without covari-
ate adjustment. This anesthesiologist is also a frequentist 
outlier, which is why the symbol also includes some blue. 
None of the anesthesiologists was detected as having a 
significantly greater incidence of Spo2 first checked ≥5 min 
after induction than the other anesthesiologists when the 
Bayesian method was applied with covariate adjustment. 
Unadj = unadjusted.

Table 3.  Summary Results for Each 6-month Period for Spo2 with the Prior Probability Set to 0.05

January 2011 to  
June 2011

July 2011 to 
December 2011

January 2012 to  
June 2012

July 2012 to 
December 2012

January 2013 to  
June 2013

Number of anesthetics 
evaluated

11,799 13,392 13,408 13,571 11,743

Number of evaluated 
anesthesiologists 
supervising at least 
one anesthetic

53 56 55 59 57

Number of anesthetics 
per Anesthesiolo-
gist, median (range)

207 (11–574) 220 (3–546) 212 (11–548) 201 (16–515) 181 (15–422)

Incidence of evaluated 
anesthetics with 
Spo2 noncompliance 
n (%)

229 (1.94%) 156 (1.16%) 153 (1.14%) 141 (1.04%) 100 (0.85%)

Anesthesiologists identified as performance outliers
 � Frequentist n = 37 n = 19 n = 25 n = 18 n = 13
 � Bayesian unadjusted 

(anesthesiologist 
identifier)

n = 0 n = 1  
(23)

n = 0 n = 0 n = 0

 � Bayesian adjusted n = 0 n = 0 n = 0 n = 0 n = 0

The overall incidence of noncompliance for the Spo2 metric was 1.22% (95% CI, 1.14–1.30%) (779 of 63,913). Anesthesiologists were labeled according 
to their number of anesthetics during the whole 2.5-yr period. For example, anesthesiologist 1 performed the most number of anesthetics, and anesthe-
siologist 2 is the second most anesthetics performed. The adjusted model includes covariates. ASA is 1 when the ASA physical status score is ≥4 and 0 
otherwise. Start of the day is a binary variable indicating if the time from the start of the surgical day to induction was ≤5 vs. >5 min. The “From ICU” variable 
reports if the preceding location before the patient was in an OR was an ICU. For interpretation, see the legend of table 2. Cochran–Armitage test of trend 
indicates reducing raw incidences of noncompliance over time (P < 0.0001).
ASA = American Society of Anesthesiologists; ICU = intensive care unit; OR = operating room; Spo2 = pulse oximetry measured oxygen saturation.
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Limitations
Our study has limitations. First, the outcomes we have cho-
sen for the demonstration of our Bayesian methods may not 
reflect the actual performance levels of anesthesiologists. For 
example, an anesthesiologist may check blood pressure from a 
transport monitor without reporting it in the electronic medi-
cal records within 5 min after induction. This is a systems-
based problem. Although charting is part of medical care, it is 
not that the blood pressure was not being measured. Second, 
we analyzed the anesthesiologist, but anesthesia at our hospi-
tal is a team with anesthesiology resident(s) and/or Certified 
Registered Nurse Anesthetists. Third, we excluded those anes-
thesiologists (rotating fellows and locum workers) who did 
not work for the department for each 6-month period that 
was studied. Our methods could have included these groups 
of anesthesia providers. As explained in the “Comparison 

with the Frequentist Approach” section, due to the shrinkage 
toward the overall mean, the method will appropriately be 
unlikely to detect an anesthesiologist with a too small sample 
size as a Bayesian outlier. Therefore, including those anes-
thesiologists who worked for the department for less than 6 
months would not change the results of our Bayesian analyses 
for our department but would have made the proportional 
effect of anesthesiologists as outliers artificially less.

Another fundamental issue is the lack of any “definitive 
standard” for performance. OPPE only requires a comparison 
of providers within a department. Therefore, our approach 
compares providers with their peers—not versus some 
external standard. It is possible that the overall departmen-
tal incidences are inappropriate (e.g., the greater incidence 
of unreported Spo2 before induction of anesthesia among 
patients from ICUs as shown in fig. 3). Consequently, we 

Fig. 6. Schematic illustration of the transmission of the data and the synchronization of the time stamps. Epic = Epic anesthesia 
information management system (Epic Systems, Inc., USA).
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cannot claim that the “lower” incidence of outliers seen with 
our approach is “correct,” whereas the unadjusted frequentist 
approach is “incorrect.” Nevertheless, the suggestion (based 
on unadjusted frequentist methods) that nearly half of all 
of our anesthesiologists are “outliers” at some point in time 
seems unlikely. Neither our approach nor the frequentist 
method can detect “global” noncompliance problems (e.g., 
everyone within a department failing to measure blood pres-
sure before induction). However, any such global standard 
(and compliance) would still need to be established via some 
kind of covariate adjustment process, similar (we believe) to 
that described in our study.

Conclusions
Given that the use of a Bayesian hierarchical multivariate 
methodology takes into account patient and practice charac-
teristics, it is more representative of differences in case numbers 
and case mix of the anesthesiologists compared with a non-
hierarchical frequentist approach. Therefore, Bayesian hier-
archical methods may be a preferable method for mandated 
monitoring of the performance of anesthesiologists instead of 
those methods assessing the raw incidence of compliance.

Acknowledgments
The authors thank David Griffiths, B.S., and Gregory Hop-
son, B.A., M.I.S., both from the Department of Anesthesia, 

University of Iowa, Iowa City, Iowa, for their assistance with 
extracting the data from Epic anesthesia information man-
agement system for this study.

Competing Interests
The authors declare no competing interests.

Correspondence
Address correspondence to Dr. Bayman: University of Iowa 
Hospitals and Clinics, 6439 JCP, 200 Hawkins Drive, Iowa 
City, Iowa 52242. emine-bayman@uiowa.edu. Information 
on purchasing reprints may be found at www.anesthesiol-
ogy.org or on the masthead page at the beginning of this 
issue. Anesthesiology’s articles are made freely accessible to 
all readers, for personal use only, 6 months from the cover 
date of the issue.

Appendix: Details of the Informatics and the 
Bayesian Model

Anesthesia Medical System Time Stamps 
Figure  6 shows the schematic illustration of the transmis-
sion of the data and the synchronization of the time stamps. 
Note that, there is no rounding on the time stamps of the 
data from the monitors. For example, the time stamp of the 
data 7:59:59 am seen from the monitor is recorded as 7:59 
am. Similarly, the time stamp data of 8:00:01 am is 8:00 am. 
Because there is no rounding on the time stamps of the data, 

Fig. 7. Illustration of Epic (Epic Systems Corporation, USA) records for using thresholds for end-tidal concentrations.  
ART = arterial; EKG = electrocardiogram; IBP = invasive blood pressure; MAP = mean arterial pressure; NIBP = noninvasive 
blood pressure; Spo2 = pulse oximetry measured oxygen saturation. Reproduced, with permission, from © 2015 Epic  
Systems Corporation.
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0 to 2 min of difference on the time stamp of the data and 
the monitor is expected. In other words, we would get arti-
fact from the engineering description of NEURON using 
the integer portion of minutes if we want to monitor if the 
anesthesiologist checked blood pressure within 2 min after 
induction. The transmission time is instantaneous when the 
device sends the data. However, the interval at which the 
data are sent varies by devices and can vary within the device.

Examples of Calculating the Total Dose of Propofol 
Total propofol dose after the anesthesia start time during the 
first 5 min of initial propofol administration was calculated. 
Both bolus dose and infusion dose were taken into account. 
Assume the patient is 70 kg. Examples:

1.	 At 11:04:00 am, an infusion of propofol is started at a rate 
of 150 μg kg−1 min−1. The anesthesia start time is listed 
as 11:05:00 am. The total propofol dose used in calcula-
tions from 11:05:00 am to 11:09:59 am is 42 mg, where 
42 mg = (150 μg kg−1 min−1) × (70 kg) × (4 min)/1,000.

2.	 Anesthesia start time is 11:20:00 am, 50 mg propofol is 
administered at 11:32:00 am, and an infusion rate of 
75 μg kg−1 min−1 propofol started at 11:36:00 am. The 
5-min window is 11:32:00 to 11:36:59 am. Therefore, 
propofol infusion only from the last minute is used. The 
total propofol dose = 50 + 70 × 75 × 1/1,000 = 55.25 mg.

3.	 Anesthesia start time is 11:20:00 am, 50 mg propofol is 
administered at 11:32:00 am, and an infusion of 75 μg 
kg−1 min−1 propofol started at 11:40:00 am. The 5-min 
window is 11:32:00 to 11:36:59 am. Therefore, propo-
fol infusion is not added to the calculation. The total 
propofol dose is 50 mg.

Using Thresholds for End-tidal Concentrations 
Consider the patient presented in figure 7 with anesthesia 
start time of 2:56 pm and induction time of 3:04 pm. The first 
arterial blood pressure or first noninvasive blood pressure 
after the anesthesia start time was at 3:02 pm for this patient.

The time of first agent (propofol, rocuronium, etomidate, 
sevoflurane, and desflurane) was calculated. When thresholds 
were not used for three volatile anesthetics, the time of first 
agent was reported as 2:57 pm, indicating the first sevoflurane 
time. The blood pressure latency minute is the time from the 
first agent (2:57 pm) to the first blood pressure recording (3:02 
pm) and becomes 5 min. In this example, the anesthesia provid-
er’s blood pressure outcome would be considered noncompli-
ant for this patient. When thresholds were used for the volatile 
agents, the first reading of sevoflurane is at 3:06 pm. The first 
agent time is 3:04 pm for propofol, and blood pressure latency 
minute is −2 min. Therefore, the blood pressure outcome of the 
anesthesia provider for this patient becomes compliant.

The Bayesian Model 
Let nk denote the number of anesthetics with induction by 
anesthesiologist k (k = 1, …, K) where K is the current number 

of anesthesiologists in the department in a given 6-month 
period. yik = 1 denotes compliance with a metric (e.g., pulse 
oximetry measured oxygen saturation [Spo2] checked before 
induction) for anesthetic i (i = 1,…, nk) for anesthesiologist 
k and yik = 0, otherwise. Assuming each anesthesiologist’s 
compliance is independent of another anesthesiologist, yik 
are Bernoulli random variables, and the probability of com-
pliance can be denoted by pik. In other words:

y p Bin n  pik ik k ik| ,∼ ( )
The logit link is used to normalize the compliance rates. The 
log odds of a compliance for anesthetic i with anesthesiolo-
gist k is denoted by θik = logit(pik) = log(pik/(1-pik)).

θik can be written as a function of patient and surgical 
characteristics. For example, the final model for the Spo2 met-
ric with the significant covariates can be written as follows:

θ µ β β β δik k= + + + +1 2 3 ASA  fromICU  HoursFromStart

where μ is the intercept in the logit scale, β1 to β3 are coef-
ficients for the independent covariates, and δk is the random 
anesthesiologist effect. It should be noted that these param-
eters were defined on the logit scale. ASA is 1 when the ASA 
physical status score is 4 or greater and 0 (zero) otherwise. 
“from ICU” is 1 when the patient comes from ICU and 0 
otherwise. Similarly, “HoursFromStart” is 1 when the min-
utes from the start of the day were greater than 5 min and 0 
(zero) otherwise.

Under the exchangeability9 assumption, anesthesiologists 
are considered to be sampled from a common distribution. 
This is assumed to be a normal distribution with a mean of 0 
and an SD of σ. In mathematical notation, this can be writ-
ten as follows: δk ~ normal (0, σ2). This reflects the similarity 
and differences between anesthesiologists.

Although only anesthesiologists with greater incidences 
of checking blood pressure or Spo2 before induction are pre-
sented in this study, with the proposed method, it is possible 
to detect also anesthesiologists with incidences that are less 
than average. The same steps can be followed. To identify 
whether an anesthesiologist has an incidence greater or less 
than average, the sign of delta is assessed. The same Bayes 
factor cutoff (Bayes factor <0.1) can be used for the strong 
evidence of having a lesser incidence than average.

A prior distribution is “weakly informative” if it is set up 
so that the information it provides is intentionally weaker 
than the available prior knowledge.10 Weakly informative 
prior distributions were used for the overall mean, μ, and 
the coefficients for the fixed effects, β1 to β3. Namely, the 
prior distribution for the overall mean was assumed to have 
a normal distribution with a mean of 0 and an SD of 2; 
µ ∼ Normal(0,2 ).2  Using units in the probability scale, the 
95% CI of the overall mean according to this prior distribu-
tion ranges between 2% (inverse logit (0 − 1.96 × 2)) and 
98% (inverse logit (0 + 1.96 × 2)).

Prior distributions for binary covariates (ASA physical 
status, whether the patient was coming from an ICU, and 
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hours from the start of the day, ≤5 vs. >5 min) were also 
assumed to be normal distribution with a mean of 0 and an 
SD of 2; βi ∼ Normal(0,2 )2 .

As explained on the Materials and Methods section, two 
times the square-root transformation provided closest to a 
linear relation with the logit probability of blood pressure 
first checked 5 min or more after induction. Because age with 
two times the square-root transformation was on the contin-
uous scale and has a wider scale, the SD of this prior normal 
distribution was assumed to be 1: βi ∼ Normal(0,1 )2 .

When the prior distribution includes the available prior 
knowledge, it is called an “informative” prior distribu-
tion. An informative inverse-gamma prior distribution is 
used for the between-anesthesiologist variance σ2: σ2~ Inv-
Gamma(α,β), with a mean of 0.125 and an SD of 0.05.

Individual Prior Probability
Chaloner and Brant7 defined an outlier as an observation 
with a large random error. The kth anesthesiologist is defined 
as an outlier, in a linear model with normally distributed ran-
dom errors, εi, with mean 0 and variance σ2, if |εi| > mσ for 
some m. The choice of m can be chosen to reflect the fact that 
the prior probability of observing an outlier is small. Given 
that the distribution of εis are independent and normally dis-
tributed with a mean 0, the prior probability of the kth anes-
thesiologist being an outlier can be written as follows:

The prior probability that the kth anesthesiologist is an 
outlier:

Pr  Pr Pr 2ε ε εi i im m m m>( ) = >( ) + < −( ) = −( )* Φ

where Φ (z) is the standard normal distribution function.
The prior probability of an anesthesiologist being an out-

lier can be modeled based on the overall (departmental) prob-
ability or the individual probability (see Bayesian Outlier 
Detection Methods). For the individual probability situation, 
the probability of each anesthesiologist being an outlier was 
set to 0.05. In this circumstance, m becomes 1.96.

Overall Prior Probability 
As a sensitivity analysis, the prior probability of an anesthesi-
ologist being an outlier can be calculated from departmental 
norms. As explained in the previous section, the prior prob-
ability that the kth anesthesiologist is an outlier can be writ-
ten as: Pr(|εi| > m) = Pr(εi > m) + Pr(εi < −m) = 2 × Φ(−m).

The prior probability that the kth anesthesiologist is NOT 
an outlier equals: 1–2 × Φ (−m).

There are a total of K anesthesiologists. Under the inde-
pendence assumption of the random error terms, the prior 
probability that none of the K anesthesiologists is an outlier 
can be written as:

1 2− −[ ]Φ( )m K

The prior probability of not detecting any anesthesiologist in 
the department, during the studied 6-month period, having 
an outlier incidence of blood pressure (or Spo2) first checked 

5 min or more after intubation should be high and is set to 
95%. In other words:

1 2 0 95− −[ ] =Φ( ) .m K

This corresponds to the probability of “at least one 
anesthesiologist in the department during the studied 
6-month period having a significantly greater incidence 
of blood pressure (or Spo2) first checked 5 min or more 
after induction than the other anesthesiologists” being 
equal to 0.05.

The prior probability of one specific anesthesiologist 
k being an outlier when there are K anesthesiologists is 
2Φ(−m), where:

m K= + ( ) 
−Φ 1 15 950 1 2 0. * . /

For example, in January 2013 through June 2013, there 
were 57 anesthesiologists, K = 57. Thus, m = 3.320, 
and the prior probability of being outlier for a specific  
anesthesiologist is 0.0009.

Adjusted WinBUGS Model for Blood Pressure  
Outcome - Individual Probability
Model
{
A	 for (i in 1:11743){
B	 goodoutBP[i] ~ dbern(p[i])
C	 logit(p[i]) <- theta[i]
D	 theta[i] <- mu + beta1*age[i] + delta[anes[i]]

}
E	 for(k in 1:57){
F	 Post.delta.1.96[k] <- step(delta[k] – 1.96*sigma.e) + 

step(-delta[k] – 1.96*sigma.e)
	 #> m <- qnorm(0.975) = 1.96

}
G	 Prob.sum <- sum(Post.delta.3.32[])
H	 Prob.any.g1.96 <- step(Prob.sum -1)

 for(j in 1:57){
I	 delta[j] ~ dnorm(0, prec.delta)

}
J	 mu~ dnorm(0, 0.25) # sd = 2
K	 beta1~ dnorm(0, 1) # sd = 1
L	 prec.delta ~ dgamma(9, 1)
M	 sd.delta <- 1/sqrt(prec.delta)
}

At A, i refers to the ith of 11,743 anesthetics performed in 
January 2013 through June 2013.

At B, goodoutBP[i] is a binary variable denoted by 1 if 
the anesthetic i is compliant for the blood pressure metric 
and 0 otherwise. Compliance rate has a Bernoulli distribu-
tion with the compliance probability of p[i].

At C, the logit transformation is applied to the compli-
ance rate, similar to the logistic regression model.
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At D, the compliance probability is written as a function 
of overall intercept (μ), patients’ age, and the random anes-
thesiologist effect (delta[anes[i]]).

At E, k stands for the kth of 57 anesthesiologists who is 
assessed for performance during the January 2013 to June 
2013 period.

At F, the posterior probability of being outlier for anes-
thesiologist k (Post.delta.1.96[k]) is calculated. The step 
function is used to calculate how many times the random 
anesthesiologist effect is more extreme than m = 1.96. Step(e) 
returns 1 if e ≥ 0 and 0 (zero) otherwise.

At G, the sum of posterior probabilities of being outlier 
for all anesthesiologists is calculated.

At H, the probability of at least one provider being an 
outlier (Prob.any.g1.96) is calculated.

At I, a random normal distribution is defined as a prior 
distribution for the random provider effect. WinBUGS uses 
the mean and precision to indicate the normal distribution. 
The normal distribution is centered at a mean of 0 and an 
SD of 1/ .prec delta .

At J, a prior distribution for the intercept term (μ) is defined 
as a normal distribution with a mean of 0 and an SD of 2.

At K, a prior distribution is defined for the slope of 
patient’s age (Box-Cox transformed). This is a normal dis-
tribution with a mean of 0 and an SD of 1 and, therefore, a 
weak informative prior distribution.

At L, the prior distribution for the precision of the ran-
dom provider effect is defined as a gamma distribution with 
parameters 9 and 1. The mean of this gamma distribution is 
9 and its SD is 3.

At M, the conversion between the SD (sd.delta) and the 
precision (prec.delta) is defined.
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