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Posterior Shrinkage Towards Linear Subspaces

Daniel K. Sewell∗

Abstract. It is common to hold prior beliefs that are not characterized by points
in the parameter space but instead are relational in nature and can be described
by a linear subspace. While some previous work has been done to account for
such prior beliefs, the focus has primarily been on point estimators within a re-
gression framework. We argue, however, that prior beliefs about parameters ought
to be encoded into the prior distribution rather than in the formation of a point
estimator. In this way, the prior beliefs help shape all inference. Through expo-
nential tilting, we propose a fully generalizable method of taking existing prior
information from, e.g., a pilot study, and combining it with additional prior beliefs
represented by parameters lying on a linear subspace. We provide computation-
ally efficient algorithms for posterior inference that, once inference is made using
a non-tilted prior, does not depend on the sample size. We illustrate our proposed
approach on an antihypertensive clinical trial dataset where we shrink towards a
power law dose-response relationship, and on monthly influenza and pneumonia
data where we shrink moving average lag parameters towards smoothness. Soft-
ware to implement the proposed approach is provided in the R package SUBSET
available on GitHub.
Keywords: exponential tilting; prior information; posterior inference.

1 Overview
Prior beliefs are often reflected in Bayesian analyses by shrinking estimates towards
some point θ0 of the parameter space Θ, such as those priors inducing sparsity (e.g.,
Park and Casella, 2008; Carvalho et al., 2010). However, at other times prior knowl-
edge leads to beliefs that are not characterized by points in Θ but rather are relational
in nature: In a regression framework we may believe a priori that the coefficients of
a polychotomous ordinal factor covariate might reflect a linear shape; In a two sam-
ple binomial context, the response rates of the two corresponding populations may be
believed to be near equal; When conducting an ANOVA we may believe a priori that
the multiple populations have near homoscedastic responses. The prior beliefs in these
examples and in other similar situations can be encoded by shrinking our estimates
towards the intersection of the parameter space and a linear subspace.

Stein-type estimators have received much attention from statisticians since the land-
mark paper by James and Stein (James and Stein, 1961). Such estimators have been
used repeatedly in regression settings to shrink the mean response curve towards a lin-
ear subspace contained within the span of the columns of the design matrix. An early
application of this was the work by Blaker (1999), who developed Stein-type estimators
that shrinks the mean response towards the space spanned by the principal compo-
nents. More recently, Shin et al. (2020) and Wiemann and Kneib (2021) considered
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the context of spline regression. By applying what they termed a functional horseshoe
prior, the authors were able to shrink the mean response curve towards a linear sub-
space (e.g., a simple polynomial relationship between y and X). While these results are
exciting, they are limited to regression settings, only shrink the mean of the response
vector, and require Gaussianity of the prior, which may be singular. Huber and Koop
(2021) developed a somewhat similar approach for vector autoregressive models with a
focus on shrinking towards factor models. An et al. (2009) considered Stein-type esti-
mators in the generalized linear model setting, proving some theoretical results in the
frequentist paradigm; see references therein for other landmark papers on Stein-type
estimators.

Deviating away from shrinking the mean response in regression settings, Oman
(1982) novelly focused on the regression coefficients directly. Using an empirical Bayesian
approach, Oman developed a point estimator for the regression coefficients that provided
shrinkage of the least squares estimate towards its projection onto the linear subspace
of interest. Lee and Birkes (1994) proposed a subspace ridge estimator for the regres-
sion coefficients, a generalized ridge estimator shrinking the estimates towards a linear
subspace; Lee and Birkes also showed how their point estimator can be derived through
a three-stage hierarchical Bayesian approach with improper priors. Hansen (2016) ex-
panded beyond the scope of regression settings (although their work still applies in that
context), proposing a general purpose point estimator that is a weighted average of
the unconstrained maximum likelihood estimator (MLE) and the MLE restricted to the
subspace of interest. Finally, Floto et al. (2022) applied an exponentially tilted Gaussian
prior for deep neural networks.

Prior work in this realm of shrinkage towards linear subspaces have focused on
point estimation, and nearly all on the frequentist properties of the proposed estima-
tors. However, if a researcher wants to shrink their estimates towards a linear subspace,
it is because there is prior information regarding the plausible values of the param-
eters. Therefore, taking a Bayesian stance is the most sensible approach, where such
prior information can naturally be incorporated into the prior belief distribution over
the parameters. This is in contrast to (1) ad hoc- even if reasonable- adjustments of
frequentist point estimates, and (2) loss functions that act to shrink posterior-based
point estimates towards a subspace.

The purpose of this paper is to provide the Bayesian practitioner highly generaliz-
able, easily implemented, and computationally efficient methods to incorporate prior in-
formation which can be encoded by shrinking towards a linear subspace. Our approach
applies shrinkage on any parameters of interest, unlike some prior work that focuses
solely on the mean structure, and while certainly applicable to regression settings, it
can be applied to any parametric setting. We emphasize that our approach incorporates
additional information into the prior, rather than replaces other prior information with
a specific prior distribution that conveniently induces shrinkage. Further, our approach
can be applied to any proper prior, not just Gaussian priors. By adjusting the prior- and
hence the posterior- rather than the point estimator, all posterior inferential statements
account for prior information regarding the linear subspace.

The remainder of the paper is as follows. In Section 2, we discuss our proposed
method to exponentially tilt an existing prior to append a priori knowledge or beliefs
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about unknown parameters lying in or near linear subspaces. In Section 3 we provide
computationally efficient methods of obtaining posterior inference under the tilted prior,
including methods for when the linear subspace itself is not fully known. In Section 4 we
evaluate our method in a simulation study. In Section 5, we illustrate our methods on
two real datasets: a clinical trial evaluating antihypertensive drug treatment where we
shrink towards a power law dose-response relationship, and on monthly influenza and
pneumonia data where we shrink moving average lag parameters towards smoothness.
Section 6 provides a brief summary and discussion.

2 Exponentially tilted priors
2.1 Introduction

Consider the typical Bayesian data analysis set up: Let y denote the observed data
with corresponding likelihood π(y|θ) parameterized by some p-dimensional unknown
parameter vector θ ∈ Θ ⊆ �p. Let π0(θ) denote the base prior density, which reflects
our prior beliefs about plausible values of θ.

While the practitioner is usually a practiced hand at setting up a prior distribution
to reflect information on location or degree of uncertainty about the true value of θ,
often the information we feel more assured about is much more difficult to encode in π0.
Consider the simplest of examples: if we believe a priori that a placebo mean will be 1
and a treatment mean will be 5, then we can center our prior π0 on θ = (θplacebo, θtrmnt)
at (1, 5). But what ought one to do if, on the other hand, we have little or no prior
information on the exact values of the treatment effects but believe that the placebo
will likely have some non-zero effect and that the treatment arm will have 5 times the
effect? In such a case we believe that there ought to be some x such that the true θ isn’t
too far from (x, 5x); in other words, we believe the true θ should be somewhere around
the linear subspace defined by the span of (1, 5)′.

In the simplest cases such as the example given above, it may be tempting to consider
a reparameterization (e.g., θtrmnt = 5θplacebo or θtrmnt = 5θplacebo + noise). However,
there are distinct disadvantages to using reparameterization as a general approach to
encoding relational information on the parameters. First, because of the lack of gener-
alizability of reparameterization, determining how to perform estimation must occur on
a case-by-case basis, and in some instances estimation may prove challenging or com-
putationally onerous. Second, it is not obvious how to integrate relational information
through a reparameterization with other non-relational prior information, such as that
obtained from a pilot study or literature review. Third, it may not be possible to perform
such a reparameterization when the parameter space is bounded. Fourth, reparameter-
ization is often a hard constraint that may not be correctly specified; this is equivalent
to a degenerate prior which violates Cromwell’s Rule which, when misspecified, cannot
retrieve the true parameter values regardless of sample size. In what follows, we propose
a fully generalizable approach that overcomes these issues.
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2.2 SUBSET priors

Consider the general case where there is some L ∈ �p×q, such as a design matrix (e.g.,
L = (1, 1,−1)′ with q = 1 in Example 1 below), that gives rise to a linear subspace
L̃ := span(L), and we believe a priori that θ lies on or near L := L̃ ∩ Θ. We aim, then,
to add this knowledge to our other prior information on θ, i.e., take our base prior π0
and adjust it in such a way so as to put smaller prior probability over regions away
from L. Towards that, we propose using the following exponentially tilted prior πν :

πν(θ) := 1
Zν,φ

π0(θ)e−
ν
2 θ

′(Ip−P (φ))θ, (1)

where Zν,φ := Eπ0

(
e−

ν
2 θ

′(Ip−P (φ))θ
)
,

and P (φ) is the projection matrix associated with L̃, which may depend on a user-
specified hyperparameter φ. (In 3.2 we will discuss estimating φ, but until that time φ
will be assumed to be a known constant and will not play a role. Thus, we will drop φ
from the notation until that time.) Eq. (1) shows concretely how we achieve our aim:
πν takes the overall shape determined by the base prior π0 and through the exponential
tilting term penalizes π0 in areas which lie on or near the orthogonal subspace of L (see
Figure 1b), implicitly then upweighting areas near L. We will henceforth refer to πν as
the SUBSET (SUBspace Shrinkage via Exponential Tilting) prior.

Proposition 1. If π0 is a valid probability density function (pdf), the SUBSET prior
πν is also a valid pdf.

The above proposition immediately follows from the fact that 0 < e−
ν
2 θ

′(Ip−P )θ ≤ 1
∀θ. To illustrate the exponentially tilted prior, we provide three examples below.

Example 1. Suppose our base prior over θ = (θ1, θ2, θ3) is a multivariate normal
distribution centered at zero with spherical covariance matrix, i.e., θ ∼ N(0, τI3), where
τI3 is the precision matrix.1 This base prior reflects where we believe θ is centered at
(0), and the degree of uncertainty we have about θ (τ). Further, suppose that we have
reason to believe that θ1, θ2, and θ3 are all roughly equal to each other in magnitude,
but that θ3 is of the opposite sign as θ1 and θ2. Then we have

L = span

⎛⎝ 1
1
−1

⎞⎠ , P = 1
3

⎛⎝ 1 1 −1
1 1 −1
−1 −1 1

⎞⎠ ,

and the SUBSET prior is θ ∼ N
(
0, τI3+ν(I3−P )

)
, so that Corr(θ1, θ2) = ν/(3τ+ν) and

similarly Corr(θ1, θ3) = Corr(θ2, θ3) = −ν/(3τ + ν). We can control the magnitude of
the correlation between the variables, then, by increasing or decreasing the exponential
tilting parameter ν.

1In this paper, we will always denote a normal distribution in terms of its precision, rather than
variance, so that N(a, b) represents a normal distribution with mean a and variance b−1.
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Example 2. Suppose we are in a two-sample normal context, i.e., yij
ind∼ N(μi, 1/σ2

i ),
i = 1, 2, j = 1, . . . , ni. In this setting it is common to assume homoscedasticity. This
assumption, equivalent to setting Pr(σ2

1 	= σ2
2) = 0, is highly unlikely to be true in

any real context, although it is most often reasonable to assume that there will be
near homogeneity, that is, the two variances will be roughly, though not exactly, equal.
Instead of making the homogeneity assumption, we can set a base prior on (σ2

1 , σ
2
2) and

shrink this prior towards the linear subspace spanned by (1, 1)′. Figure 1 shows the
bivariate base prior set as the product of two independent half-t distributions with 2
degrees of freedom (1a), how that base prior is rescaled due to the exponential tilting
term in (1) with ν = 2 (1b), and the corresponding SUBSET prior that shrinks towards
homoscedasticity (1c). The hyperparameter ν controls the degree of shrinkage, which
can be seen to dictate the a priori correlation between the two variances in (1d).

Example 3. Suppose we are in the two-sample binomial context, i.e., yi ∼ Bin(ni, pi),
i = 1, 2. We use as our base prior a product of independent Jeffreys reference priors,
i.e., Beta(1/2, 1/2). However, we believe a priori that it is likely that the response rate
p1 is twice that of p2, and hence we wish to push our prior density mass away from
regions in (0, 1)2 that do not reflect this, i.e., we wish to shrink our prior probability
towards span((2, 1)′) ∩ (0, 1)2. Figure 2 shows the Jeffreys priors (a) and the SUBSET
prior (b).

Example 4. Consider the heteroscedastic weighted regression model where for i =
1, 2, . . . , N

yi
ind∼ N(X1,iβ, 1/σ2

i ),
σ2
i = X2,iγ,

where X1,i and X2,i are covariates used to model the mean and variance structures
respectively (X1,i may equal X2,i). If we do not wish to make the linear relationship
between the regression weights and the covariates X2,i a hard constraint, we may instead
consider letting the σ2

i follow, e.g., an inverse gamma distribution, and use a SUBSET
prior that shrinks (σ2

1 , . . . , σ
2
N ) to the column space of (X ′

2,1, . . . , X
′
2,N )′.

The next theorem demonstrates that the SUBSET prior leads to a higher concen-
tration of posterior probability mass near the linear subspace everywhere along that
subspace.

Theorem 2. Let L, P , π0, and πν be as defined above. Define Bε(L) := {θ : θ′(I−P )θ <
ε}. Let π0(θ|y) and πν(θ|y) denote the posterior density function of θ under the base
prior and the SUBSET prior respectively, and let Pr0(θ ∈ A|y) and Prν(θ ∈ A|y) denote
the posterior probability that θ ∈ A for some region A ⊂ Θ under the base and SUBSET
priors respectively.

For any L 	= ∅ and ε > 0 such that

0 <

∫
Bε

πj(θ|y)dθ < 1, j ∈ {0, ν},
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Figure 1: Illustrative Example 2 of applying the SUBSET prior to shrink towards ho-
moscedasticity. (a) Product of independent half-t distributions with 2 degrees of free-
dom. (b) Weighting of the parameter space introduced by the exponential tilting. (c)
SUBSET prior using the independent half-t’s as the base prior and setting ν = 2. (d)
Prior correlation between σ2

1 and σ2
2 as a function of ν.
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Figure 2: Illustrative Example 3 of applying the SUBSET prior to shrink towards the
space where the population 1 response rate is φ times that of population 2. The base
prior is the product of independent Jeffrey’s priors. In (b) and (d), the tilting parameter
ν was fixed at 50.
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we have
Prν(θ ∈ Bε|y) > Pr0(θ ∈ Bε|y).

The proof can be found in the Supplementary Material (Sewell, 2023).

By influencing the posterior through the prior, all posterior inference, not just point
estimation, is affected by the prior belief that θ lives on or near the linear subspace.
Point estimation, too, is affected by using a SUBSET prior, but through the appropriate
mechanism of affecting the Bayes risk through the posterior.

Remark 1. Lee and Birkes (1994) proposed a “subspace ridge” estimator, β̂SRDG, in
a linear regression setting (y|Xβ, σ2 ∼ N(Xβ, In/σ

2)) which shrinks the estimates of
β towards a linear subspace with projection matrix P . If the commonly implemented
improper prior π(β, σ2) ∝ 1/σ2 is used as a base prior and ν is set to k/σ2 for some
k > 0, then the posterior mean obtained from the SUBSET prior would be equivalent
to the subspace ridge estimator, namely

Eπν (β|y) =
(
X ′X + k(I − P )

)−1
X ′y = β̂SRDG.

Note that the focus of Lee and Birkes (1994) was on point estimation, rather than
obtaining a posterior distribution which incorporated the prior knowledge that the re-
gression coefficients ought to lie on or near the subspace.

Remark 2. It is easy to accommodate shrinkage of subsets of parameters towards
different subspaces, as well as have some parameters not shrunk at all. That is, sup-
pose we have a partition of size (R + 1) of a p-dimensional set of parameters θ =
(θ0, θ1, θ2, . . . , θR), where θ0 of dimension p0 is not being shrunk towards a linear sub-
space, and for r = 1, . . . , R, θr of dimension pr is being shrunk towards the linear
subspace with pr × pr projection matrix Pr. Then we can set P in (1) to be the block
diagonal matrix with diagonal blocks equal to Ip0 , P1, . . . , PR.

3 Estimation
3.1 Fixed L
Posterior inference can, of course, be accomplished in all of the usual ways. However, as
we will describe shortly, when shrinking the posterior mass towards a linear subspace it is
beneficial to evaluate the effect of various levels of shrinkage, i.e., values of ν, as well as to
compare the results to those obtained from no shrinkage. With this in mind, it becomes
clear that an efficient estimation method is needed. That is, in many- if not most- real
data analyses, posterior sampling of θ|y is computationally expensive, and if MCMC
is used convergence diagnostics must be obtained; performing this repeatedly for many
values of ν quickly becomes untenable in most situations. The following importance
sampler overcomes this issue by only requiring posterior samples of θ|y under the base
prior to be obtained once, followed by very fast importance sampling for each value of
ν whose computational cost does not, for example, scale with the sample size nor with
the length of a MCMC burn-in period.
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Importance sampler

Suppose we have obtained posterior samples {θy,k}Ky

k=1 under the base prior, i.e., from

π0(θ|y) ∝ π(y|θ)π0(θ). (2)

as well as samples {θ0,k}K0
k=1 taken directly from the base prior π0. We propose using

π0(·|y) as the importance distribution to obtain samples from the posterior under the
SUBSET prior

πν(θ|y) ∝ π(y|θ)π0(θ)e−
ν
2 θ

′(I−P )θ. (3)

Under this importance distribution, the unnormalized importance weights wy,k(ν)
corresponding to θy,k, are simply

wy,k(ν) ∝ exp
{
−ν

2 θ
′
y,k(I − P )θy,k

}
. (4)

In choosing ν, one has (at least) three choices. First, ν can be selected manu-
ally a priori based on obtaining a prior distribution over θ matching one’s prior be-
liefs.

Second, one can do a sensitivity analysis a posteriori, evaluating the effects of various
values of ν. This is very fast to compute since (1) wy,k(ν) does not depend on sample
size, and (2) wy,k(ν) = [wy,k(1)]ν , and hence (4) need only be computed once for ν = 1,
and then these unnormalized weights can be exponentiated to obtain the weights for
other values of ν. If one were to take this approach, it is important to ensure that the
effective sample size does not decrease below an acceptable threshold, for as ν increases,
the posterior under the SUBSET prior will shift farther away from π0(·|y) leading to
weight degeneracy.

Third, one can use Bayes factors to determine the value of ν. The Bayes factor for
the SUBSET prior vs. base prior can be written as

πν(y)
π0(y)

=
Eπ0

(
e−

ν
2 θ

′(I−P )θ
∣∣∣y)

Eπ0

(
e−

ν
2 θ

′(I−P )θ) (5)

(see Supplementary Material for derivation; Sewell, 2023). This can then be approxi-
mated via

πν(y)
π0(y)

≈
1

Ky

∑Ky

k=1 wy,k(ν)
1
K0

∑K0
k=1 w0,k(ν)

, (6)

where w0,k(ν) := exp{−ν
2 θ

′
0,k(I−P )θ0,k}. Again, since w0,k(ν) = [w0,k(1)]ν and wy,k(ν)

= [wy,k(1)]ν , it is relatively fast to numerically maximize (6) as a function of ν. This
importance sampling algorithm using Bayes factor to select ν is provided in Algo-
rithm 1.
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Algorithm 1: Importance sampler for posterior sampling under the SUBSET prior,
returning the draws from the importance distribution and their importance weights,
where the shrinkage parameter ν is selected by largest Bayes factor.

Input: Posterior samples {θy,k}Ky

k=1 under the base prior; Prior samples
{θ0,k}K0

k=1; Projection matrix P .
for k = 1, . . . ,K0 do

Compute w0,k(1) = exp{−1
2θ

′
0,k(I − P )θ0,k}

end
for k = 1, . . . ,Ky do

Compute wy,k(1) = exp{−1
2θ

′
y,k(I − P )θy,k}

end
Function helper(ν):

return
1

Ky

∑Ky
k=1[wy,k(1)]ν

1
K0

∑K0
k=1[w0,k(1)]ν

Use univariate optimizer to find ν∗ := argmax
ν

helper (ν)

Compute wy,k(ν∗) := [wy,k(1)]ν∗

return {θy,k, wy,k(ν∗)}Ky

k=1

Large sample approximation

For large sample sizes (where posterior sampling can become tedious), many important
and historical works have proved the asymptotic normality of the posterior distribution
(Bernstein, 1917). While certain settings have required further development of these
theorems (e.g., Shen, 2002, develops such results for semi- and non-parametric posteri-
ors), fairly general conditions for where this holds are given in Chen (1985) and will be
our focus moving forward.

If the conditions outlined by Chen hold, then under π0

θ|y, π0
·∼ N(mn,Ωn),

where mn is the posterior mode and Ωn is the Hessian of the negative log posterior
at mn. In this setting, we can approximate the exponentially tilted posterior in the
following way:

πν(θ|y) ∝ π(y|θ)π0(θ)e−
ν
2 θ

′(Ip−P )θ

·∝ exp
{
−1

2

[
θ′
(
Ωn + ν(Ip − P )

)
θ − 2θ′Ωnmn

]}
,

⇒ θ|y, πν
·∼ N(m̃n, Ω̃n), (7)

Ω̃n := Ωn + ν(Ip − P ),

m̃n := Ω̃−1
n Ωnmn.
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This implies that once the posterior mode and Hessian under the base prior are com-
puted (either analytically, numerically, or via posterior sampling), there is negligible
computational cost required to obtain an approximate posterior under exponential tilt-
ing with tilting parameter ν.

The selection of ν using Bayes factors can be done in a similar fashion to Algorithm 1.
The only change necessary is to replace the numerator in the helper function to be the
expectation evaluated analytically:

Eπ0

(
e−

ν
2 θ

′(I−P )θ∣∣y) = |Ωn|
1
2 |Ω̃n|−

1
2 exp

{
−1

2

(
m′

nΩnmn − m̃′
nΩ̃nm̃n

)}
.

3.2 Estimating L
The subspace towards which we should shrink our posterior is not always precisely
defined. Continuing Example 3, we may be confident that p1 is larger than p2, and
while we may be confident that p1 is somewhere in the neighborhood of 2 times larger
than p2, we might be hard pressed to specify that factor exactly.

Consider a more general setting, where the subspace is the span of some column
vectors which in turn are a function of unknown parameters φ taking values in Φ,
and let P (φ) denote the corresponding projection matrix. In the preceding example we
were considering L = span((φ, 1)′) ∩ (0, 1)2 for φ = 2, but we may relax this so that
φ ∈ (0,∞). Figure 2 shows a log-normal prior over φ (c) and the resulting marginal
prior over the two population response rates (d).

In the case of unknown φ, a 2-block Metropolis-Hastings-within-Gibbs sampler can
be effectively employed to obtain posterior samples in a computationally efficient man-
ner, where we alternate between sampling θ and sampling φ. This is due to the fact that
for fixed θ, if we draw φ∗ from its prior independently from our Markov chain’s current
value φcurr, it can be shown that a Metropolis-Hastings sampling step accepts φ∗ with
probability

min
{

1, exp
{
−ν

2 θ
(k)′(P (φcurr) − P (φ∗))θ(k)

}
· Zν,φcurr

Zν,φ∗

}
. (8)

Importance sampler (unknown φ)

Let φ take a finite number of values with corresponding prior probability mass func-
tion πφ. In the case where φ is better considered continuous with probability density
function π̃φ, given that φ will not be of primary importance, we assume that we may
sufficiently approximate this by taking a sequence of quantiles {φq}Qq=1 and taking
πφ(φq) ∝ π̃φ(φq).

Unlike the case with fixed φ, now we must worry about the SUBSET normalizing
constant Zν,φ, which typically will not have a closed form solution. However, since Zν,φ is
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an expectation with respect to the base prior on θ, we may obtain an arbitrarily accurate
Monte Carlo estimate Ẑν,φ by taking samples from π0(θ), which will typically be easy
to accomplish (as was done in Algorithm 1). Hence in our 2-block Gibbs sampler, for a
given θ we can draw φ∗ from πφ and accept it with probability given in (8), substituting
Zν,φ with its Monte Carlo estimate Ẑν,φ.

For a fixed φ ∈ {φq}Qq=1, we can implement the importance sampler described in
Section 3.1 to approximate the full conditional of θ|y, φ by the atomized approximation

π̂(θ|y, φ = φq) =
Ky∑
k=1

w̃(φq)y,kδθy,k
(θ), (9)

where {θy,k, w(φq)y,k}Kk=1 are the samples and importance weights obtained through
fixing φ = φq and computing the weights via (4), and w̃(φq)y,k is the normalized impor-
tance weight for the kth sample. The importance sampler is extremely fast, and draws
from the importance distribution along with their weights can be obtained for each of
the finite values of φ before running the Gibbs sampler. The resulting 2-block Gibbs
sampler is described in Algorithm 2.

Large sample approximation (unknown φ)

Suppose that the posterior arising from the base prior can again be well approximated
with a normal distribution. Given a fixed value of φ, the full conditional distribution of θ
is the normal distribution given in (7). As in Algorithm 2, a simple Metropolis-Hastings
step can be taken to update φ.

Since we no longer need to perform importance sampling for each value of φ, we
no longer constrain φ to take values on a discrete set. Yet the need to compute Monte
Carlo estimates of the normalizing constant Zν,φ can still slow the sampling algorithm
to a debilitating level. However, as the next proposition shows, under arguably most
scenarios we have smoothness in Zν,φ which can aid computation significantly.
Theorem 3. Suppose L = L(φ) is of full rank and differentiable in φ for all φ ∈ Φ,
and P (φ) := L

(
L′L

)−1
L′. Then for any ν > 0, Zν,φ is continuous in φ over Φ.

The proof is in the Supplementary Material (Sewell, 2023).

We propose, therefore, prior to performing the 2-block Gibbs sampler to perform a
two-stage estimation scheme for Zν,φ, using a spline regression- or if φ is multivariate
use tensor product splines or thin-plate splines- for a sequence of values of φ predicting
Ẑν,φ, and then in the Gibbs sampler using estimated values of Z from this spline fit.
This approach is given in Algorithm 3.

4 Simulation studies
To evaluate the strengths and weaknesses of the usage of SUBSET priors, we ran two
simulation studies. The results shown here correspond to the importance samplers;
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Algorithm 2: Two-block MH-within-Gibbs sampler for unknown θ and unknown φ
(i.e., unknown linear subspace), relying on importance sampling.

Input: Posterior samples {θy,k}Ky

k=1 under the base prior; Prior samples
{θ0,k}K0

k=1; Projection matrix function P (·); Initial values θν,0 and φν,0;
Shrinkage weight ν; Prior πφ over the set {φq}Qq=1; Desired number of
posterior samples Kν .

/* Precompute key quantites for Gibbs sampler */
for q = 1, . . . , Q do

Compute Ẑν,φq = 1
K0

∑K0
k=1 e

− ν
2 θ

′
0,k(I−P (φq))θ0,k

Compute w(φq)y,k = e−
ν
2 θ

′
y,k(I−P (φq))θy,k for k = 1, . . . ,Ky

end

Compute P curr ← P (φν,0)

/* Perform 2-block Gibbs sampler */
for k = 1, . . . ,Kν do

/* Draw a new θ|y, φ */
Set θν,k = θy,k′ with probability proportional to w(φν,k−1)y,k′

/* Draw a new φ|y, θ */
Draw φ∗ from the prior over φ (πφ)
Compute P ∗ ← P (φ∗)
Draw u ∼ Unif(0, 1)
if u < exp

{
−ν

2 θ
′
ν,k(P curr − P ∗)θν,k

}
· Ẑν,φν,k−1

Ẑν,φ∗
then

P curr ← P ∗

φν,k ← φ∗;
else

φν,k ← φν,k−1
end

end
return {θν,k, φν,k}Kν

k=1

using the large sample approximations yielded similar results, which can be found in
the Supplementary Material (Sewell, 2023).

4.1 1-way ANOVA

Our first simulation study used a 1-way ANOVA setting, evaluating the SUBSET prior
on the estimation and inference of the group variances. The data we simulated used 6
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Algorithm 3: Two-block MH-within-Gibbs sampler for unknown θ and unknown
φ (i.e., unknown linear subspace), relying on a large sample approximation of the
posterior. Note that if Φ is finite, {φs}Ss=1 should equal Φ, and ̂̂

Z(φ) = Ẑν,φ rather
than predictions from the spline fit.
Input: Posterior mode mn and precision matrix Ωn using the base prior; Prior

samples {θ0,k}K0
k=1; Projection matrix function P (·); Initial values θν,0

and φν,0; Shrinkage weight ν; Prior πφ; Spline function f : Φ �→ �;
Sequence {φs}Ss=1; Number of posterior draws Kν .

/* Precompute key quantites for Gibbs sampler */
Compute P curr ← P (φν,0)
for s = 1, . . . , S do

Compute Ẑν,φs = 1
K0

∑K0
k=1 e

− ν
2 θ0,k

′(I−P (φs))θ0,k

end

Fit spline model ̂̂
Z(·) from regressing Ẑν,φs on f(φs)

/* Perform 2-block Gibbs sampler */
for k = 1, . . . ,Kν do

/* Draw a new θ|y, φ */
Draw θν,k from N(m̃n, Ω̃n) as defined in (7) using P = P (φν,k−1)

/* Draw a new φ|y, θ */
Draw φ∗ from the prior over φ (πφ)
Compute P ∗ ← P (φ∗)
Draw u ∼ Unif(0, 1)

if u < exp
{
−ν

2 θ
′
ν,k(P curr − P ∗)θν,k

}
·

̂̂
Z(φν,k−1)̂̂

Z(φ∗)
then

P curr ← P ∗;
φν,k ← φ∗

else
φν,k ← φν,k−1

end
end
return {θν,k, φν,k}Kν

k=1

groups, each with 20 observations, for a total sample size of 120, i.e.,

ygi
iid∼ N(μg, 1/σ2

g), g = 1, . . . , 6, i = 1, . . . , 20.

The group means were set to be (1, 2, . . . , 6), and the group variances were set according
to three scenarios:

• Homoscedasticity. Each group had a residual variance of 2.
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• Mild heteroscedasticity. The group variances were (1, 1.6, 2.2, 2.8, 3.4, 4).

• Strong heteroscedasticity. The group variances were (1, 3, 5, 7, 9, 11).

Variances, even when not of interest directly, are important for other quantities of
interest, e.g., prediction intervals and Exceedance in Pairs Rate2 (Rosner et al., 2021).

We fit three models to each data set. The first assumed homoscedasticity, using a
Normal-Inverse gamma prior on the means and (common) variance, i.e.,

μg|σ2 iid∼ N(0, a/σ2),
σ2 ∼ Γ−1(b/2, c/2),

We set a = 1, b = 1, and c = 2.

The second model assumed heteroscedasticity, with a prior structure similar to that
given above:

μg|σ2
g

ind∼ N(0, a/σ2
g),

σ2
g

iid∼ Γ−1(b/2, c/2).

The third model used the heteroscedastic prior given above as the base prior for a
SUBSET prior with ν selected via Bayes factor according to Algorithm 1. We shrunk the
group variances towards the subspace spanned by (1, . . . , 1)′, i.e., towards homoscedas-
ticity.

Each model used 50000 posterior draws, and data from each of the three scenarios
were generated and analyzed 2000 times.

Table 1 provides the results for the estimation of {σ2
g}6

g=1 in terms of 95% credible
interval (CI) widths, 95% CI coverage rates, and MSE. In the case of homoscedastic
data, fitting the homoscedastic model unsurprisingly yields the lowest CI widths and
lowest MSE. All approaches yield coverage rates near the nominal level. Importantly,
the SUBSET prior improves the performance of the heteroscedastic model in terms of
CI width, CI coverage, and MSE. For mildly heteroscedastic data, the homoscedastic
model cannot appropriately model the uncertainty due to the hard constraint of ho-
moscedasticity, leading to very low coverage and high MSE. However, compared to the
heteroscedastic model, the SUBSET prior yields a 26% reduction in MSE and a 29%
reduction in the average CI width, although at a cost of a 0.07 reduction in coverage
rate. For the strongly heteroscedastic data, once again the homoscedastic model per-
forms very poorly. Compared to the heteroscedastic model, the SUBSET prior yields a
14% reduction in MSE and a 14% reduction in average CI width, at a cost of a 0.014
reduction in coverage rate.

In short, the SUBSET priors helped improve the fit of the heteroscedastic model
when incorrectly specified, and did much better in terms of MSE and CI widths when
the true parameters lied outside of the subspace, at the cost of a small reduction in
coverage rates.

2Roughly, EPR is a measure of how well separated the groups are.
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Homoscedastic Heteroscedastic SUBSET
Homoscedastic data

CI Width 1.118 3.111 1.926
CI Coverage 0.920 0.943 0.970

MSE 0.103 0.649 0.221
Mildly heteroscedastic data

CI Width 1.363 3.768 2.685
CI Coverage 0.378 0.875 0.806

MSE 1.202 1.001 0.738
Strongly heteroscedastic data

CI Width 3.066 8.330 7.202
CI Coverage 0.262 0.871 0.857

MSE 12.445 5.193 4.445
Table 1: 1-way ANOVA simulation study results for {σ2

g}6
g=1. All credible intervals were

at 95%.

4.2 Ordinal factor covariate

Our second simulation study used a regression setting with a single ordinal factor co-
variate with 9 levels. The true group means were 0.005×(0, 1, 24, 34, . . . , 84). There were
five observations per group, and the residual standard deviation was 1.

We fit three models to each simulated dataset. The first used a Zellner’s g prior,
setting g to be equal to the sample size (45). The remaining two models were SUBSET
priors using the Zellner’s g prior as the base prior and the following two linear subspaces:

• Power: span
((

1 1 · · · 1
1 2φ · · · 9φ

)′)

• Geometric: span
((

1 1 · · · 1
1/φ 1/φ2 · · · 1/φ9

))

Note that the true parameter vector lies in neither of these linear subspaces. We esti-
mated φ alongside the true regression coefficients via Algorithm 2. To implement this,
for the power subspace, we used 15 quantiles coming from a gamma distribution with
shape equal to 2 and rate equal to 1; for the geometric subspace, we used 15 quantiles
coming from a Beta distribution with both shape parameters equal to 2. To determine
ν, we temporarily set φ to be fixed at its mode (1 for the power subspace, and 1/2 for
the geometric subspace) and selected ν by maximizing the Bayes factor via Algorithm 1.
As before, each model used 50000 posterior draws, and we generated 2000 datasets.

Table 2 provides the results for the estimation of the regression coefficients in terms
of 95% CI widths, 95% CI coverage rates, and MSE. All methods achieved near 100%
coverage rates, although the different methods achieved this with varying CI widths.
Compared to posterior inference using the base prior, the SUBSET priors yielded on av-
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erage 9% and 3% smaller CI widths for the power and geometric subspaces respectively,
and 25% and 8% lower MSE respectively.

SUBSET
Zellner (power) (geometric)

CI Width 3.676 3.337 3.571
CI Coverage 0.997 0.997 0.997

MSE 0.398 0.300 0.367
Table 2: Ordinal covariate simulation study results. All credible intervals were at 95%.

5 Pedagogical analyses
The following analyses illustrate the application of SUBSET priors using the R package
SUBSET3 developed by the author. Code to replicate these analyses is included in the
Supplementary Material (Sewell, 2023).

5.1 Antihypertensive clinical trial (Ordinal covariates)

Sung et al. (2022) conducted a 7 arm randomized clinical trial aimed at discovering the
effect of various drug treatments at various doses on reducing the mean sitting systolic
blood pressure (MSSBP) over a period of 8 weeks. The efficacy endpoint was the change
in MSSBP from baseline to the end of the 8 week period. For the purposes of this
analysis, we will focus on the following four treatment arms: placebo, and combination
treatments of telmisartan/amlodipine/chlorthalidon at quarter-dose, third-dose, and
half-dose.

Table 3 provides the summary statistics from the study, from which it can be seen
that there is a failure to observe the expected dose-response relationship between the
dose of the combination treatment and the sample mean change in MSSBP (lower is
better, reflecting a larger reduction in blood pressure). However, such a non-monotonic
relationship is highly implausible. Letting μ = (μ1, μ2, μ3, μ4) denote the mean change
in MSSBP, we can impose our prior beliefs in a monotonic dose-response relationship
by shrinking our prior on μ to favor values on or near the span of⎛⎜⎜⎝

1 0
1 1

4φ

1 1
3φ

1 1
2φ

⎞⎟⎟⎠
for some φ > 0. That is, we believe that there may be some placebo effect, and on top
of that there is a drug effect that follows some power law.

3In R, run remotes::install_github(‘‘dksewell/SUBSET’’) .
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Mean SD
Placebo −5.85 10.74
1/4 dose −18.87 16.87
1/3 dose −14.55 14.84
1/2 dose −19.55 14.75

Table 3: Summary statistics from multi-arm clinical trial on antihypertensive drugs.

Figure 3: Antihypertensive clinical trial example. Dashed line shows the Γ(2, 2) prior on
φ (the parameter dictating the power law of the treatment effect), and the solid lines
correspond to the posterior of φ using values of ν ranging from 0.25 to 2 graded from
lightest to darkest respectively.

As a base prior, we used independent conjugate Normal-Gamma distributions over
the mean and precision for each treatment arm. Hence our model for the antihyperten-
sive randomized clinical trial is

yi|treatmenti = k,μ, τ
ind∼ N(μk, τk),

μk|τ ind∼ N(a0, b0τk),

τk
ind∼ Γ(c0/2, d0/2), (10)

for k = 1, . . . , 4, where we set a0 = −5, b0 = 1, c0 = 3, and d0 = 75. Additionally, we
set a Γ(2, 2) prior on φ, with a prior mean value of φ equal to 1 (linear drug effect). We
obtained 10000 draws each from the posterior and prior distributions under the base
prior and the posterior under the SUBSET prior.

We ran the Gibbs sampler of Algorithm 2 (similar results using Algorithm 3 are
provided in the Supplementary Material) using values of ν in (0.25, 0.5, . . . , 2) and for
φ considered 50 evenly spaced quantiles from its Gamma prior. Figure 3 shows that
for most values of ν, the posterior of φ centers near 1/2, implying a prior that shrinks
towards a square root relationship between dose and mean change in MSSBP.

Figure 4 shows for the different values of shrinkage, i.e., ν, the posterior mean for
the mean change in MSSBP, as well as the posterior probability that the dose response
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Figure 4: Antihypertensive clinical trial example. The horizontal axis represents differing
levels of ν, i.e., shrinkage towards the linear subspace; the left vertical axis corresponding
to the solid lines shows the posterior mean estimate of the mean change in MSSBP;
the right vertical axis corresponding to the dashed line shows the posterior probability
that there is a monotonic relationship between dose and mean change in MSSBP. As ν
increases, the expected dose-response relationship emerges.

is monotonic. Although ν increases, the point and interval estimates for the placebo are
near constant. Importantly, however, for ν ≥ 0.5, the posterior means of μ reflect a dose-
response relationship, i.e., Eπν (μ1|y) > Eπν (μ2|y) > Eπν (μ3|y) > Eπν (μ4|y), thereby
giving us plausible estimates on the effect of the combination treatment on reducing
hypertension. While under the base prior there was only a 0.11 posterior probability of
a monotonic relationship, this surpassed 0.5 at ν = 0.5 and 0.8 at ν = 1.75.

5.2 Influenza and Pneumonia monthly mortality (Smoothing
MA(q) coefficients)

As a second example, we illustrate how to use SUBSET priors to smooth the estimates
of a sequence of parameters. We analyzed monthly mortality caused by influenza and
pneumonia in the US from 2014-2019 (National Center for Health Statistics, 2022). We
detrended the data and based on ACF and PACF plots fit a moving average (MA)
model with 15 lags using adaptive MCMC (Scheidegger, 2021). We used as the base
prior for the MA coefficients N(0, 2), and for the variance of the residuals a gamma
distribution with shape and rate both equal to 2. We obtained 50000 posterior draws
under π0 and removed 10000 as a burn-in period, for a remaining 40000 draws. We
obtained 5000 draws from the prior to estimate the Bayes factors.

To shrink towards smoothed estimates of the MA coefficients, we used Algorithm 1
using the linear subspace spanned by the natural cubic spline basis functions evaluated
at the lags (1-15) using 4 degrees of freedom (implying 3 internal knots). The value of
ν which maximized the Bayes factor was 32.7.

Figure 5 shows the posterior mean and 95% credible intervals for the MA coefficients
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Figure 5: Influenza and pneumonia monthly mortality example. Estimated MA coeffi-
cients. Posterior mean and 95% credible interval bounds under the base prior are given
by the solid black and gray lines respectively. Under the SUBSET prior with ν = 32.7
(selected via Bayes factor), these are given by the dark blue and light blue dashed lines
respectively.

under both the base prior and the SUBSET prior with ν = 32.7. From this figure we
can see that both posteriors are telling the same overall story, but that the posterior
point and interval estimates under the SUBSET prior are much more smooth.

6 Discussion
The information and beliefs we have about parameters of interest are often relational in
nature, which cannot be encoded simply by, e.g., a location shift in the prior distribution.
Instead, such prior knowledge leads us to believe that the parameters ought to lie
on or near some linear subspace. This type of information is ubiquitous, and yet a
comparably small amount of attention has been given it. Previous work has focused
almost exclusively on point estimation within a regression setting.

We have proposed a new approach to incorporating relational prior information
that can be represented by parameters lying on a linear subspace. Our approach has
the following advantages. First, our approach is completely generalizable to any setting,
including regression.

Second, we argue that the most logical way to handle prior beliefs described by a
linear subspace is to incorporate such information in the prior distribution, which by
definition is where our prior beliefs ought to be contained. Doing so allows not only
point estimates but all inference to account for this information.
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Third, our approach of applying exponential tilting to a base prior does not “over-
write” other prior information that has already been encoded in this base prior such as
previous data or scientific domain knowledge. Rather, our approach takes the a priori
plausible regions of the parameter space from this prior information and further hones
the plausible regions to conform to prior beliefs described by the linear subspace.

Fourth, we have provided methods to obtain posterior inference in a highly com-
putationally efficient manner, allowing for researchers to quickly derive Bayes factors
for or conduct sensitivity studies of ν or other facets of the linear subspace. In par-
ticular, once K0 and Ky prior and posterior samples respectively have been obtained
under the base prior, computing the Bayes factor in Algorithm 1 for a particular ν costs
O(K0∨Ky). Performing the MH-within-Gibbs sampler of Algorithm 2 has a bottleneck
from the multinomial importance resampling of the Ky posterior samples at each step of
the Gibbs sampler, leading to a computational cost of O(KνKy log(Ky)) (Kronmal and
Peterson, 1979), assuming that K0 grows at the same or slower rate as Ky. Algorithm 3
alleviates this problem entirely by avoiding the resampling of the original Ky posterior
draws, and has a computational cost of O(K0 ∨ Kν). Critically, these computational
costs are free from the sample size and the computational complexity of evaluating the
posterior.

Our proposed methodology has certain limitations. First, while the use of Bayes
factors provides an automated approach to selecting the hyperparameter ν for the case
of fixed φ, for the case when φ is estimated, ν may be determined again using Bayes
factors for a user-specified value of φ else, as an anonymous reviewer pointed out, one
may consider using an alternative approach such as cross-validation or putting a prior
on ν and estimating it. Further research into the selection of ν in this context would be
worthwhile. Second, with unknown φ, the estimation of the normalizing constant Zν,φ

may become challenging with higher dimensional φ. Third, in the proposed estimation
algorithms, the normalizing constant Zν,φ is estimated at least once through a Monte
Carlo approach, and in Algorithm 3 a second time through splines. While potentially
concerning, in our simulation study (see Supplemental Material for results), this did not
seem to have deleterious effects on estimation and inference, and should it appear to be
problematic in new scenarios not considered here, work on doubly intractable posteriors
(see, e.g., Park and Haran, 2018) may be brought to bear. Fourth, Algorithm 2 relies
on using a discrete number of values of φ. We anticipate that this will not typically be
problematic in practice since φ will not be a parameter of primary interest, yet there
may be situations where a discretization of Φ is suboptimal.

It is not uncommon for data scientists to obtain unexpected, and perhaps unreason-
able, results, such as in the antihypertensive clinical trial of Section 5.1 in which the
quarter-dose yielded a greater reduction in MSSBP than the third-dose or the half-dose.
A reaction such as “this can’t be right!” is indicative that there are in fact prior beliefs
about the relations between the model parameters. In the above example, we should
feel extremely confident that the reduction from a quarter-dose ought to be less than or
equal to that from a third-dose, which in turn ought to be less than or equal to that of
a half-dose. This type of prior belief also appears when there is an ordinal covariate in
a regression setting. Other examples include when we expect smoothness (of which the
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monotonicity above was a special case) across a naturally ordered set of parameters,
when we believe that there may be near homoscedasticity, or when we believe there may
be equal response rates in a two-population binomial setting. Our proposed sampling
algorithms outlined in Section 3 should be reasonably easy to implement for a practic-
ing statistician accustomed to performing Bayesian analyses; still, to further lower the
barrier to implementation we have developed the R package SUBSET and have illustrated
its use in the Supplementary Material where the real data analyses are replicated.

Supplementary Material
Supplementary Material to “Posterior shrinkage towards linear subspaces”
(DOI: 10.1214/24-BA1414SUPP; .pdf). This supplementary material provides the proofs
for Theorems 2-3, the derivation for the Bayes factors, simulation study results for the
large sample approximations, as well as a walkthrough of how to implement the R
package SUBSET, including replication of the findings presented in Section 5.
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