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Abstract6

While logistic regression models are easily accessible to researchers, when applied to network7
data there are unrealistic assumptions made about the dependence structure of the data.8
For temporal networks measured in discrete time, recent work has made good advances9
(Almquist & Butts, 2014), but there is still the assumption that the dyads are conditionally10
independent given the edge histories. This assumption can be quite strong and is sometimes11
difficult to justify. If time steps are rather large, one would typically expect not only the12
existence of temporal dependencies among the dyads across observed time points but also13
the existence of simultaneous dependencies affecting how the dyads of the network co-evolve.14
We propose a general observation-driven model for dynamic networks that overcomes this15
problem by modeling both the mean and the covariance structures as functions of the edge16
histories using a flexible autoregressive approach. This approach can be shown to fit into a17
generalized linear mixed model framework. We propose a visualization method that provides18
evidence concerning the existence of simultaneous dependence. We describe a simulation19
study to determine the method’s performance in the presence and absence of simultaneous20
dependence, and we analyze both a proximity network from conference attendees and a world21
trade network. We also use this last data set to illustrate how simultaneous dependencies22
become more prominent as the time intervals become coarser.23

Keywords: dependence structures, dynamic networks, generalized linear mixed models,24
multivariate probit, observation-driven model25

1 Introduction26

Co-occurrence data involves observing a set of interactions, or edges, between a set27

of actors. The observed edge set and actor set together form a network object. Such28

networks arise in multitudinous contexts, and the analysis of network objects has29

been of extreme importance to scientists in a wide range of fields. In particular,30

the analysis of network dynamics is an extremely interesting and often difficult area31

to work in, as temporal dependencies are added to an already complex network32

dependence structure.33

Several classes of models for temporally measured, or dynamic, networks have34

been proposed, mostly over the last two decades. Each of these classes comes with35

pros and cons, as one would expect. The network literature is vast even for dynamic36

networks, and so we only touch on a few of the key classes of models before37

presenting our proposed approach.38
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Modeling dynamic networks using continuous-time Markov processes has a long39

history beginning with Holland & Leinhardt (1977) and continuing with several40

other works (e.g., Wasserman, 1980; Leenders, 1995). A very impactful work41

continuing the adoption of continuous-time Markov processes is the stochastic42

actor-oriented model (Snijders, 1996), which has since seen much methodological43

and software development (Ripley et al., 2013). In this framework, each actor forms44

a new edge or breaks an existing edge in order to maximize that actor’s so-called45

objective function. This function can represent homophily on attributes or structures46

of the network itself, such as transitivity and reciprocity. This class of models has47

been very popular and useful, and allows for wide flexibility in constructing the48

objective function.49

Another popular class of models used for static networks is the exponential50

random graph (ERG) models, proposed by Frank & Strauss (1986) and developed51

further in countless works. The ERG family of models was extended to dynamic52

networks by Robins & Pattison (2001), and later extended by Hanneke et al. (2010)53

and others. The temporal ERG model, or TERG model, in contrast to the stochastic54

actor-oriented model, assumes the network data to be generated according to55

a discrete time Markov process. The general idea in these ERG models is to56

put the probabilistic structure of the observed networks in terms of functions of57

sufficient statistics. These statistics often correspond to a count of some topological58

feature, such as triangles or k-stars. The TERGM is quite flexible in the sufficient59

statistics that can be included in the model, is parsimonious, and can handle60

complex dependencies in the network. Similar in spirit is the Separable TERGM61

(Krivitsky & Handcock, 2014), where both the formation and dissolution process62

are modeled. Unfortunately, there are a variety of problems that arise with these63

types of ERG models. There is the intractable normalizing constant that must be64

approximated, as well as degeneracy issues, or non-existence of the maximum65

likelihood estimators. See, e.g., Okabayashi (2011) and Jin & Liang (2013) for66

more on this, as well as Hummel et al. (2012) for remedies to some of these67

problems.68

Stochastic blockmodels (Holland et al., 1983; Wang & Wong, 1987;69

Snijders & Nowicki, 1997) have been one of the most widely used and studied70

class of models for networks. The mixed membership blockmodel (Airoldi et al.,71

2008) was extended for dynamic networks by Xing et al. (2010). While quite useful,72

blockmodels suffer from an inability to capture network dependencies induced by73

complex features such as transitivity or reciprocity.74

A large number of models fall into the class of latent space models. These models75

originated with Hoff et al. (2002) for static networks, and expanded in a variety of76

ways (see, e.g., Handcock et al., 2007; Krivitsky et al., 2009). These models were then77

extended to the dynamic context by Sarkar & Moore (2005), Durante & Dunson78

(2014), and Sewell & Chen (2015). Scalability remains an issue with latent space79

models, though some attempts have been made to alleviate this (Raftery et al.,80

2012; Salter-Townshend & Murphy, 2013), and determining the dimensionality of81

the latent space has attracted relatively little serious work, the main exception being82

work done by Durante & Dunson (2014).83

Our proposed work builds off of the logistic network regression models proposed84

by Almquist & Butts (2013, 2014). This model provides a simple yet flexible85
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framework for capturing the temporal dependency by modeling the mean as86

a function of sufficient statistics constructed from previous observations of the87

network. Their model has distinct advantages such as scalability, flexibility, and88

easy accessibility to anyone familiar with generalized linear models. The authors89

derive this model from the TERGM based on a clear set of assumptions. The most90

controversial of these is that the network dyads are conditionally independent given91

the network history. The problem is that the simultaneous dependence is ignored, i.e.,92

the dependence between the co-evolving dyads. These simultaneous dependencies93

play an important role in the evolution of the network, especially as the intervals94

at which the network is observed increase (Lerner et al., 2013). It is well known95

that ignoring extra variation in the data can, in contexts similar to our own, lead96

to inconsistent estimation and attenuated estimates of the parameters (Demidenko,97

2013). Thus ignoring simultaneous dependence in the data will in many cases lead to98

poor estimation; we shall demonstrate this analytically in Section 2.3 and empirically99

in Section 6.100

Cox (1981) used the terms “parameter driven” and “observation driven” models101

to describe two approaches for modeling binary time series data. In the context of102

dynamic network analysis, we can think of the latent space approach as the analog to103

parameter-driven models, where the temporal dependencies of the network are driven104

through some latent variables evolving through, say, a Markov process. Our proposed105

model follows what may be considered an observation-driven approach, where106

both the simultaneous and temporal dependencies are driven by some functions of107

the lagged observed networks. More specifically, our proposed approach captures108

temporal dependence through modeling the mean as a function of lagged networks109

and similarly captures the simultaneous dependence through modeling the covariance110

as a function of lagged networks.111

An important motivation for this work was accessibility to appropriate network112

methodology for those without extensive statistical background. We believe that113

those familiar with generalized linear mixed models (GLMMs) (see Section 4)114

should be able to easily understand and utilize our proposed approach, and115

software will be made available on the author’s website to further facilitate116

accessibility. While using a familiar framework, we account for both temporal117

and simultaneous dependence, thus avoiding the adverse inferential impacts118

that we otherwise would expect to occur by ignoring these two sources of119

variation.120

In Section 2, we present our proposed methodology, as well as some suggestions121

for appropriately choosing the mean and covariance functions. In Section 3, we122

describe our approach to estimation, with the details and selected proofs given in the123

appendix. Section 4 generalizes our approach by fitting our method into the familiar124

GLMM framework. In Section 5, we describe a visualization approach to evaluating125

the evidence regarding the existence and impact of simultaneous dependence in the126

data. In Section 6, we present a simulation study that examines the performance of127

our model in the presence and absence of simultaneous dependencies. In Section 7, we128

analyze two real data sets, illustrating the utility of our method and the importance129

of accounting for simultaneous dependence in real data, as well as illustrating130

how simultaneous dependence becomes more prominent as time intervals become131

coarser.132
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2 Methodology133

2.1 Context and notation134

We assume that we have n objects, or actors, each of which may have some135

interactions or relationships with the other actors. If such an interaction/relationship136

exists between actors i and j, we say there is an edge between them. We assume137

that the set of actors are constant over time, though the edges themselves may138

exist during any subset of all possible time points. Here, we assume the data are139

collected at discrete time points. Collectively, the set of actors and the time-varying140

set of edges define the dynamic network. The data obtained can then be represented141

by a three-dimensional tensor, or equivalently a sequence of adjacency matrices,142

where each adjacency matrix, denoted as At, t = 0, 1, . . . , T , is an n × n matrix143

corresponding to the edges that exist at time t. That is, the (i, j)-th entry of At, Aijt,144

equals one if there is an edge from i to j at time t and zero otherwise. The diagonal145

entries of each adjacency matrix hold no meaning unless so-called self-loops are146

allowed, that is, an actor may send an edge to itself. For the purposes of clarity in147

our exposition, we will assume in Section 2 that such self-loops are allowed as this148

helps facilitate the mathematical description of the model and its properties; it is149

trivial to translate the presented model to the context of no self-loops. However,150

because (1) self-loops are relatively rare in practice, and (2) the derivations of our151

estimation algorithm requires additional non-trivial steps when self-loops are not152

allowed, the derivations provided in our appendices assume the diagonal elements153

of the At’s are meaningless. Additionally, the data in Sections 6 and 7 do not have154

self-loops.155

We also assume there exist some exogenous covariate information with which we156

would like to explain or predict the edge probabilities. These covariates may by157

static (e.g., race or gender) or time-varying (e.g., income or marital status). In the158

remainder of the paper, we will treat the covariates as though they are time-varying159

with the understanding that static covariates may be treated as such simply by160

replicating them from one time point to the next. We denote the dyadic covariate161

information by the n × n matrices X�t, � = 1, . . . , p1, t = 1, . . . , T . For notational162

convenience, we will denote a linear combination of equal sized matrices as 〈β,Xt〉 :=163 ∑p1

�=1 β�X�t, where β = (β1, . . . , βp1
) and Xt is a 3-dimensional array whose �th slice164

is X�t.165

As will be seen shortly, we shall be focusing on covariance structures, and hence166

it is natural to implement a probit type model for our binary dyadic data (although167

we will generalize the work in Section 4). We thus assume that there are some168

underlying matrices of normal random variables A∗t that directly correspond to At169

via the surjective function Aijt = 1{A∗ijt>0}.170

2.2 Observation-driven model171

The proposed model is an observation-driven approach, rather than parameter-172

driven. That is, we may write the conditional mean of A∗t as a function of A0, . . . , At−1173

rather than as a function of some unobservable noise process. Observation-driven174

approaches for temporal binary data have been well studied in simpler contexts.175

While some complicated mean functions have been proposed (e.g., Shephard, 1995),176
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often it is the simple and intuitive177

�(A∗ijt|Aij(t−1, Ait(t−2), . . .) =

p1∑
�=1

β�X�t[i, j] +

p2∑
�=1

θ�Aij(t−�),

(e.g., Cox, 1981; Zeger & Qaqish, 1988), where X[i, j] is the (i, j)-th entry of the178

matrix X. However, this simplistic mean function is insufficient for complex network179

objects. With this in mind, we will allow the second term of the mean of A∗t to be180

〈θ,Gt〉 := 〈θ,G(At−1, At−2, . . .)〉, where θ = (θ1, . . . , θp2
), and Gt maps the previous181

adjacency matrices onto the space of n × n × p2 tensors, i.e., Gt uses the previous182

adjacency matrices to construct p2 new n× n matrices.183

Note that p2 does not refer to the number of lagged time points as in the simple184

binary time series model, but rather can encompass a number of salient features185

of the previous adjacency matrices, such as stability, reciprocity, or transitivity.186

As a simple example, if we include stability and reciprocity for up to a lag of187

two time points, then p2 = 4 and the slices of Gt are At−1, A
′
t−1, At−2, and A′t−2.188

These p2 covariates involving functions of the lagged network can thus be used189

in sophisticated ways to explain the temporal dependencies, i.e., the dependence190

between Aijt and Ak�s, t �= s. For examples of other ways to construct Gt, see Table 1191

or the appendices of Almquist & Butts (2014).192

Networks are complex objects, however, and attempting to capture all193

dependencies through the mean structure alone is insufficient, particularly as the194

intervals between time points grow larger. One would typically expect not only the195

existence of temporal dependencies through which the network at varying time points196

are dependent, but also simultaneous dependencies that dictate how the dyads of the197

network co-evolve. Thus, we should be quite concerned with appropriately modeling198

the second moments of the A∗ijt’s.199

With this motivation in mind, we begin with the following multivariate probit200

model. Let At be equal to vec(A∗t ). Then set201

�(A∗t |At−1, At−2, . . .) = 〈β,Xt〉+ 〈θ,Gt〉 (1)

Cov(At) = ΣA∗ ,t. (2)

Note that ΣA∗ ,t determines the covariance structure among the n2 dyads, and202

hence has O(n4) parameters. Clearly, it would not be possible to estimate such203

an unconstrained ΣA∗ ,t outside of the context of small n large T , nor is this204

unconstrained covariance structure what one would expect to see in reality. Going205

to the extreme of constraining ΣA∗ ,t to be the identity matrix (and thus ignoring206

simultaneous dependence entirely) leads to the model presented in Almquist & Butts207

(2014), and hence what is presented here can be thought of as an alternative208

generalization of their methods (the TERGM is the original motivation for and209

generalization of their approach).210

2.3 Ignoring simultaneous dependencies211

Here, we make a short note on estimation errors associated with ignoring existing212

variablity in the data. Demidenko (2013) gives a short discussion on these types of213

issues with regard to GLMMs (see chapter 7). For our context, suppose we may214
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write the normal random variables A∗ijt’s as215

A∗ijt = 〈β,Xt〉[i, j] + 〈θ,Gt〉[i, j] + sit + rjt + Eijt,

where sit, rit, and Eijt are zero mean normal random variables (possibly correlated216

in complex ways, though letting sit, rit ⊥ Eijt∀i, j, t ). Then we have the following217

proposition, the proof of which is given in Appendix 8.218

Proposition.219

�(Aijt = 1|β, θ) = Φ

(
�(A∗ijt)√

Var(Eijt) + Var(sit + rjt)

)
, (3)

where Φ(·) is the CDF of a standard normal distribution, and �(A∗ijt) is given in220

Equation (1).221

Now consider the very simple example where we have222 (
sit
rit

)
iid∼ N

(
0,

(
τs 0

0 τr

))
and constant variance for the Eijt’s. We can quickly see that should we223

ignore simultaneous dependence, any attempts to estimate (β, θ) would in fact224

unintentionally lead to the attenuated estimation of (β, θ) scaled by Var(Eijt)+τs+τr .225

For more general cases, when Var(sit + rjt) is time dependent or dependent on the226

actors i and j, it is unclear what, if anything, any naive estimates of (β, θ) are actually227

estimating.228

2.4 Simultaneous and temporal autoregressive model229

A middle ground between fully ignoring simultaneous dependence and using a230

saturated covariance matrix ΣA∗ ,t would be to assume that there ought to be some231

connection with the covariance between two dyads and the actors that are incident232

on those two dyads. This simple and intuitive idea will eventually lead us to a model233

resembling the social relations model (Warner et al., 1979), having the form234

A∗ijt = mean structure + sender effects + receiver effects + residuals

(the final form is given in Equation (10)). To get there, we begin by introducing the235

following definition.236

Definition. An n× n matrix A∗ has a role-based additive covariance structure if237

Cov(A∗ij , A∗k�)
= Σs[i, k] + Σr[j, �] + Σsr[i, �] + Σsr[k, j] + σ2

R1[{(i,j)=(k,�)}∪{(i,j)=(�,k)}]
+ σ2

ε1[(i,j)=(k,�)], (4)

where Σs, Σr , and Σsr are n× n covariance matrices that represents, respectively, the238

covariance among the senders of the dyads, the receivers of the dyads, and between239

the senders and the receivers, and where σ2
R and σ2

ε correspond to pair and dyad240

variance, respectively.241

A role-based additive covariance structure can be interpreted to mean that the242

covariance between any two dyads (i, j) and (k, �) can be explained by how similar243
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i and k are as senders, how similar j and � are as receivers, how i and � relate244

to each other as sender and receiver, respectively, and similarly for k and j, the245

variability due to reciprocated dyads, and the inherent variability between the246

dyads.247

The role-based additive covariance structure has a nice representation that248

lends itself well to estimation. To demonstrate this, we provide the following249

theorem.250

Theorem. The following are equivalent.251

1. The A∗ijt’s are jointly normal with a role-based additive covariance structure and252

mean given by Equation (1).253

2. At ∼ N
(
vec(〈β,Xt〉+ 〈θ,Gt〉),

Jn ⊗ Σst + Σrt ⊗ Jn + 1n ⊗ Σsrt ⊗ 1′n + 1′n ⊗ Σ′srt ⊗ 1n

+ σ2
RMR + (σ2

ε + σ2
R)In2

)
,

254

(5)

where 1k is the k × 1 vector of 1’s, Jk equals 1k1′k , and Ik is the k × k identity255

matrix, and where MR is a matrix such that for 1 � i �= j � n, MR[(j − 1)n +256

i, (i− 1)n + j] = 1 and Mr[�, m] = 0 everywhere else.257

3. A∗t = 〈β,Xt〉+ 〈θ,Gt〉+ st1′ + 1r′ + Et, where258 (
st
rt

)
iid∼ N

(
0,

(
Σst Σsrt

Σ′srt Σrt

))
,

(Et[i, j], Et[j, i])
′ iid∼ N

(
0, σ2

ε I2 + σ2
RJ2

)
. (6)

The proof is given in Appendix 8.259

Unconstrained, the covariance structure of Equation (6) still has O(n2) parameters260

to be estimated. The question then is how to appropriately, yet parsimoniously,261

represent the covariance structure of (st, rt). In response, we pose the following262

question: if the features found in (At−1, At−2, . . .) can appropriately capture the263

temporal dependence through the mean structure, may we not also capitalize on264

the information stored in (At−1, At−2, . . .) to estimate the simultaneous dependence265

through the covariance structure? (This is similar in principle to ARCH models. See266

Engle, 1982). We propose using an autoregressive model on the covariance structure267

of (st, rt) as well as on the mean structure of A∗t , so that Cov(At|At−1,At−2, . . .) is268

some function of (At−1,At−2, . . .).269

Specifically, we consider Cov(st, rt) with the following structure:270

Σst =

Ks∑
k=1

τskHskt Σrt =

Kr∑
k=1

τrkHrkt Σsrt =

Ksr∑
k=1

τsrkHsrkt (7)271

where τsk , τrk , and τsrk are positive valued parameters, Hskt, Hrkt, and Hsrkt are272

functions of (At−1, At−2, . . .), and Hskt, Hrkt ∈ �n
+ for all k. Here, �n

+ denotes the273
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positive semi-definite (PSD) cone. Writing Cov(st, rt) in this manner, i.e., as a linear274

combination of PSD matrices, is similar in principle to covariance structures studied275

for many decades (e.g., Anderson, 1973). Constructing the covariance matrices in this276

manner allows us to use the data to represent complex simultaneous dependence,277

while reducing the number of parameters from O(n2) to Ks + Kr + Ksr .278

Note that this does not automatically ensure that ΣA∗ ,t ∈ �n2

+ , and so some care279

is still needed. To ensure that we have a valid covariance matrix, we constrain280

Ksr � min{Ks,Kr}, and for 1 � k � Ksr impose the constraint that281 ⎛⎝ τskHskt τsrkHsrkt

τsrkH
′
srkt τrkHrkt

⎞⎠ ∈ �(2n)
+ . (8)

The structure found in Equation (7) allows us to further decompose st and rt as282

st =

Ks∑
k=1

skt, skt
ind∼ N(0, τskHskt)

rt =

Kr∑
k=1

rkt, rkt
ind∼ N(0, τrkHrkt)

Cov(skt, rk′t) =

⎧⎨⎩ τsrkHsrkt if 1 � k = k′ � Ksr

0 otherwise.

(9)

283

This then results in having our multivariate probit model with role-based additive284

covariance structure represented as285

A∗t = 〈β,Xt〉+ 〈θ,Gt〉+
(

Ks∑
k=1

skt

)
1′ + 1

(
Kr∑
k=1

rkt

)′
+ Et. (10)

2.5 Broader context of sender/receiver effects286

By first assuming an intuitive form for the covariance of the dyads, we are able to287

arrive at a multivariate mixed effects probit model for the dynamic network, using288

individual sender and receiver effects. The use of individual sender and receiver effects289

has a long history in network analysis, starting with Warner et al. (1979). In nearly290

all cases, the additive sender and receiver effects can be put within the framework291

described above by setting Ks = Kr = Ksr = 1 and Hs1t = Hr1t = Hsr1 = In.292

An important work using this is the p2 model of Duijn et al. (2004). This work293

was built off of the p1 model of Holland & Leinhardt (1981), which was not294

motivated by modeling an appropriate covariance structure. Latent space models295

have incorporated additive sender/receiver effects as well, such as Hoff (2005) (which296

also incorporated multiplicative effects), and Krivitsky et al. (2009).297

The above-referenced works are all concerned with static networks.298

Westveld & Hoff (2011) used the ideas of sender and receiver effects to model299

the covariance of the data for dynamic networks. As with the others, they constrain300

Ks = Kr = Ksr = 1 and Hs1t = Hr1t = Hsr1 = In, while also assuming AR301

processes on the sender and receiver effects (and on the residuals). While there302

is merit in this approach, we still prefer capturing the temporal dependency303

through the observation-driven model. This is primarily because one may utilize304
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specific network features, such as stability, reciprocity, transitivity, etc. to help305

explain the temporal dependencies. In this way, one may argue that there is more306

flexibility, and researchers can investigate the specific effects of various network307

features.308

The way in which we use sender and receiver effects here differs in two important309

ways from previous uses. First, the constraints on the covariance matrix of the dyads310

are relaxed to allow ΣA∗ ,t to be dense, thus generalizing the way that researchers have311

in the past used sender and receiver effects in their models. Second, we incorporate312

past data to make the parameter space parsimonious. That is, a dense covariance313

matrix with O(n4) unknowns can, by leveraging past information, be estimated using314

Ks + Kr + Ksr parameters. For an example of how we may do this in practice, see315

Section 2.6.316

2.6 An example of operationalization317

One of the strengths of Equations (1) and (7) is the flexibility in choosing the318

features of the previous adjacency matrices to be used in constructing the mean319

and covariance functions. In this subsection, we provide an example, based on320

sociological principles as well as previous research in statistical models for networks,321

with the intention that researchers using the STAR model may use whatever network322

features are most appropriate for their particular context.323

Fortunately for the analyst looking at dynamic network data, there has been much324

focus in the social science literature on the salient structures of networks. To quote325

Wasserman & Faust (1994),326

Many researchers have shown, using empirical studies, that social network data possess strong327
deviations from randomness. . . . data often fail to agree with predictions from [models with328
assumptions, such as equal popularity, lack of transitivity, or no reciprocity].329

Krackhardt & Handcock (2007) made note that it has long been argued that “the330

triad, not the dyad, is the fundamental social unit that needs to be studied” (see331

also Simmel & Wolff, 1950), which further emphasizes that transitivity is, to quote332

Wasserman & Faust (1994) again, “indeed a compelling force in the organization of333

social groups.”334

These notions then motivate the construction of Gt, the three-dimensional tensor335

whose �th slice is denoted by G�t, as given in Table 1. We can categorize these336

eight structures of the network in the following terms. G1t and G2t correspond to337

first-order structures, that is, features of the network that relate to individual actors338

only. G3t and G4t correspond to second-order structures, that is, features of the339

network that relate to dyads. G5t to G8t correspond to third-order structures, that is,340

features of the network that relate to triads. In particular, G5t to G7t correspond to341

transitivity in the network, i.e., the probability that a transitive relation exists, while342

G8t corresponds to a cycle, i.e., the probability that a three-cycle will be completed.343

These last four structures are depicted visually in Figure 1, where we are considering344

the probability of an edge from i to j and visualizing the transitive and cyclic triadic345

relations involving the third actor k. One note regarding G1t to G8t is that these346

same features could of course be trivially extended to more than just a lag of 1347

whenever appropriate.348
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Table 1. Example of how to construct Gt, incorporating first-, second-, and third-order

structures.

(out degree) G1t = At−1Jn G1t[i, j] =
∑n

k=1 Aik(t−1)

(in degree) G2t = JnAt−1 G2t[i, j] =
∑n

k=1 Akj(t−1)

(stability) G3t = At−1 G3t[i, j] = Aij(t−1)

(reciprocity) G4t = A′t−1 G4t[i, j] = Aji(t−1)

(transitivity 1) G5t = At−1At−1 G5t[i, j] =
∑n

k=1 Aik(t−1)Akj(t−1)

(transitivity 2) G6t = At−1A
′
t−1 G6t[i, j] =

∑n
k=1 Aik(t−1)Ajk(t−1)

(transitivity 3) G7t = A′t−1At−1 G7t[i, j] =
∑n

k=1 Aki(t−1)Akj(t−1)

(cycle) G8t = A′t−1A
′
t−1 G8t[i, j] =

∑n
k=1 Aki(t−1)Ajk(t−1)

i j

k

(a)

i j

k

(b)

i j

k

(c)

i j

k

(d)

Fig. 1. Network structures which are being summed over k to determine the mean

of A∗ijt. (a) G5t[i, j]. (b) G6t[i, j]. (c) G7t[i, j]. (d) G8t[i, j].

Intuitively, Σst and Σrt ought to reflect how similar actors behave as senders and349

receivers, respectively. We therefore suggest setting Ks = Kr = 2, Ksr = 1, and350

Hs1t = Hr1t = Hsr1t = In

Hs2t = D
−1/2
out,(t−1)At−1A

′
t−1D

−1/2
out,(t−1), (11)

Hr2t = D
−1/2
in,(t−1)A

′
t−1At−1D

−1/2
in,(t−1),

where Dout,(t−1) and Din,(t−1) are diagonal matrices whose diagonal entries are the351

out-degrees and in-degrees of At−1, respectively. The (i, j)-th entry of Hs2t then is the352

number of actors to whom both i and j sent edges scaled by the geometric mean of353

the total number of actors to whom i and j each sent edges. In this manner, we are354

capturing the intended notion of similarity between senders while enforcing Hs2t to355

be PSD. In fact, Hs2t is a valid correlation matrix. Similarly for Hr2t, a note on the356

practical implementation of this is that to avoid the possibility of dividing by zero357

anywhere, in our analyses we set the diagonal of At−1 to be 1 when computing Hs2t358

and Hr2t. To ensure that the covariance of (st, rt) is PSD, and hence the covariance359

of At is PSD, we constrain360

Ω :=

(
τs1 τsr1
τsr1 τr1

)
∈ �2

+. (12)

2.7 Undirected networks361

The above proposed methodology has focused on directed dynamic networks.362

Simplifying to an undirected dynamic network implies that Equations (4) and (5)363

can be written364

Cov(A∗ijt, A∗k�t) = Σst[i, k] + Σst[j, �] + Σst[i, �] + Σst[k, j] + σ21[(i,j)=(k,�)]

⇔ Cov(At) = Jn ⊗ Σst + Σst ⊗ Jn + 1 ⊗ Σst ⊗ 1′ + 1′ ⊗ Σst ⊗ 1 + σ2I. (13)
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The estimation algorithm given in Section 3 can be adapted to the undirected case;365

some of the details which are not obvious are given in Appendix 8. In the analysis366

of Section 7.1, we set367

Σst = τsHst, where Hst = D
−1/2
(t−1)At−1At−1D

−1/2
(t−1) (14)

and Dt is the diagonal matrix whose diagonal entries are the degrees of the actors368

corresponding to At, i.e., At1. For autoregressive mean terms, we used369

(degree) G1t = At−1Jn + JnAt−1G1t[i, j] =
∑n

k=1

(
Aik(t−1) + Ajk(t−1)

)
(stability)G2t = At−1 G2t[i, j] = Aij(t−1)

(triangle)G3t = At−1At−1 G3t[i, j] =
∑n

k=1 Aik(t−1)Ajk(t−1).

370

3 Variational Bayes estimation371

From a Bayesian perspective, we would like to make posterior inference regarding372

the mean parameters β and θ as well as the variance components τsk ’s, τrk ’s, and373

τsrk ’s. In what follows, we will assume the particular formulation given in Section 2.6.374

Thus of interest is deriving π(β, θ,Ω, τs2, τr2, σ
2
R |{At}Tt=0). Note that just as with any375

probit model, σ2
ε is constrained to equal 1 for identifiability. We assign the following376

priors on the model parameters.377

(β′, θ′)′ ∼ N(0, diag(σ2
β, . . . , σ

2
β, σ

2
θ , . . . , σ

2
θ)),

τs2 ∼ IG(as0, bs0),

τr2 ∼ IG(ar0, br0),

Ω ∼ IW (aΩ0, BΩ0),

σ2
R ∼ IG(aR0, bR0),

where diag(σ2
β, . . . , σ

2
β, σ

2
θ , . . . , σ

2
θ) is the (p1 + p2) × (p1 + p2) diagonal matrix whose378

first p1 diagonal entries are σ2
β and whose last p2 diagonal entries are σ2

θ , IG(a, b) is379

the inverse gamma distribution with shape parameter a and scale parameter b, and380

IW (a, B) denotes the inverse Wishart distribution with degrees of freedom a and381

scale matrix B.382

Rather than implementing a computationally expensive MCMC algorithm, we383

implement a mean field variational Bayes (VB) algorithm. This estimation technique384

finds an approximation of the posterior distribution such that the Kullback–385

Leibler divergence between this approximation and the true posterior distribution is386

minimized. This minimization is done under the constraint that the approximated387

posterior density is a product of densities corresponding to a partition of the388

unknown model parameters. See, e.g., Gelman et al. (2004) (Chapter 13) for a brief389

overview of variational methods.390

While much faster than MCMC, one issue with the VB algorithm is a negative391

bias of the variance components. In our analyses, we found that the bias was so392

strong in σ2
R as to render the reciprocity effects negligible, which led to poorer393

performance overall. To address this, first consider further data augmentation394

via the n × n symmetric matrices of dyad-pair specific random effects Rt, such395

that Rt[i, j] = Rt[j, i]
iid∼ N(0, σ2

R). That is, we now have the equivalent form of396
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Equation (10)397

A∗t = 〈β,Xt〉+ 〈θ,Gt〉+
(

Ks∑
k=1

skt

)
1′ + 1

(
Kr∑
k=1

rkt

)′
+ Rt + Ẽt, (15)

where Ẽt is a matrix of iid normal random variables with zero mean and variance398

σ2
ε . To prohibit σ2

R from shrinking to zero, we treat it as a hyperparameter for the399

Rt’s. While not ideal, this seemed to improve overall performance.400

The specific form of the approximated posterior is401

π(β, θ, τs2, τr2,Ω, σ2
R, {A∗t }Tt=1, {s1t, r1t, s2t, r2t}Tt=1, {Rt}Tt=1|{At}Tt=0)

≈ q1(β, θ)q2(τs2, τr2,Ω)q3({At}Tt=1)q4({s1t, r1t, s2t, r2t}Tt=1)q5({Rt}Tt=1)q6(σ
2
R).

(16)

This is an iterative scheme, in which we use the parameters from, say, q� to estimate402

qm and vice versa. The closed-form solutions to the VB updates are given in403

Appendix 8. The derivations for the sender and receiver effects are also provided, as404

these are not straightforward due to the fact that the derivations must be taken with405

respect to the distribution of A∗t ◦ (Jn− In) rather than A∗t , as given in Equation (10).406

The VB approach is quite fast and yields good point estimates. This comes at a407

cost, however. VB algorithms may get stuck in local modes, and which local mode408

one ends up in may be highly dependent on the starting values (see, e.g., Bickel et al.,409

2013; Salter-Townshend & Murphy, 2013, for more detailed studies using variational410

approaches). Additionally, by partitioning the parameters and forcing them to be411

independent in the approximate posterior, the posterior probability regions are412

typically much too concentrated. In our context, we found that a Gibbs sampler413

obtained similar posterior means, though wider credible intervals. The MCMC414

algorithm was simply too slow in practice for networks of medium to large size,415

however.416

4 Generalizing to weighted networks417

In this section, we demonstrate how to generalize our approach to weighted networks418

in which the dyads are not constrained to {0, 1}. We accomplish this by placing our419

work within the framework of a GLMM. Most researchers, statisticians or not, are420

familiar with GLMMs that are often the tool of choice for modeling dependent non-421

Gaussian data. The general framework assumes that a function of the means of the422

random variables are themselves correlated (typically Gaussian) random variables,423

thus allowing researchers to control for the correlation among the data. Specifically,424

for some response vector y, covariate matrix X, random variables γ, and design425

matrix Z, we write426

g
(
�(y)

)
= Xβ + Zγ. (17)

(Note that the notation in Equation (17) is not linked to anything previously given,427

but is rather a general form for a GLMM).428

Up to this point, we have assumed a probit model, as this was a natural approach429

to dealing with complex dependencies in binary data. This is equivalent to a GLMM430

using the normal inverse cumulative distribution function as the link function g.431
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Placing our proposed methods within the GLMM framework allows us to use other432

link functions such as a logit() for logistic regression, as well as allowing us to433

model other types of non-Gaussian data; e.g., should our network data be count,434

as is often the case, we may use a log link corresponding to a Poisson or Negative435

Binomial family of distributions. Countless texts describe these models, and in fact436

GLMMs are so prevalent that many fields have books or articles demonstrating437

how to apply GLMMs to their specific subject area (e.g., Bolker et al., 2009; Gbur,438

2012; Krueger & Montgomery, 2014; Bharadwaj, 2016).439

We wish to maintain the covariance structures detailed in Section 2.4, and in440

particular that implied by Equation (15) but generalize it to other link functions441

and other data types. This can be done by setting442

g
(
�(At|At−1,At−2, . . .)

)
= (vec−(X1t) , vec

−(X2t) , . . . , vec
−(G1t) , vec

−(G2t) , . . .)
(

β
θ

)
+ Zγt,

Z =
(
1′

Ks
⊗ Zs 1′

Kr
⊗ Zr Zrec

)
,

γt =
(
s′1t · · · s′

Kst r′1t · · · r′
Krt R′t

)′
, (18)

where Rt contains the lower triangular elements of Rt (i.e., Rt = (R21t, R31t, . . . ,443

Rn(n−1)t)), and where vec−(M) for some n × n square matrix M is the standard444

vec(M), while omitting the diagonals; hence vec−(M) will be an n(n− 1)× 1 vector.445

To construct Zs, we may stack In,(−1,·), In,(−2,·), . . ., and In,(−n,·) to form a n(n− 1)× n446

matrix, where In,(−i,·) is the n × n identity matrix with the ith row removed. Zr is447

simply In ⊗ 1n−1. Constructing the n(n − 1) × n(n − 1)/2 matrix Zrec is perhaps the448

most involved, but can be accomplished by the following pseudocode:449

Set all elements of Zrec to 0.

for i ∈ {1, 2, . . . , n} do

for j ∈ {1, 2, . . . , n} \ i do
r ← (n− 1)(j − 1) + i− 1[i>j]

if i > j then c = n(j − 1)− j(j+1)
2

+ i else c = n(i− 1)− i(i+1)
2

+ j

Zrec[r, c]← 1
end

end

450

By placing our methods within the GLMM framework, we provide an easy way451

to handle a wide range of data types as well as overdispersion.452

5 Evidence of simultaneous dependence453

We now begin to address determining whether or not simultaneous dependence454

exists. Just as with mixed models, we could check the intraclass correlation between455

the pairs of residuals Et[i, j] and Et[j, i] to evaluate the importance of simultaneous456

reciprocity. That is, estimate457

σ2
R

σ2
R + 1

. (19)

The issue is not so straighforward for the other types of simultaneous dependence.458

Consider the case where the variance of A∗ijt does not depend on the actors i and459
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j nor the time t, the off diagonals of Hsrk are 0 for all k, and the Hsk ’s and Hrk ’s460

have been scaled such that the diagonal entries are 1 (as is true in our example of461

Section 2.6). Then analogously to Equation (19), one may consider the vector462

v/(v′1) where v = (τs1, τs2, . . . , τsKs
, τr1, . . . , τrKr

, σ2
R, 1). (20)

Though Equation (20) appears similar to a vector of intraclass correlations,463

these two things are in fact not comparable. Equation (20) is only a464

ratio of variance components, while Equation (19) is a veritable correlation.465

In the context of a directed network, there are seven correlations466

we could consider: Cor(A∗ijt, A∗k�t), Cor(A∗ijt, A∗kit), Cor(A∗ijt, A∗kjt), Cor(A∗ijt, A∗i�t),467

Cor(A∗ijt, A∗ijt),Cor(A∗ijt, A∗j�t), and Cor(A∗ijt, A∗jit). Moreover, these seven correlations468

very well may differ based on which actors we are considering! Instead, we present a469

visualization method that may be used to assess the evidence regarding the existence470

and impact of simultaneous dependence.471

The main idea is that we would like to evaluate how much of our posterior472

distributions of
(
{skt}Ks

k=1, {rkt}Kr

k=1

)
, t = 1, . . . , T , are located within some small ball473

around zero. If there is no simultaneous dependence, then we would expect the474

posterior distributions to reflect this in having most of their mass near zero. Hence,475

we are concerned with476

Pε,t :=

∫
Bε

dF
(
{skt}Ks

k=1, {rkt}Kr

k=1 | {At}Tt=1

)
= �

(
‖(s′1t, . . . , s′Kst

, r′1t, . . . , r′Krt
)‖ < ε | {At}Tt=1

)
, (21)

where Bε represents the ball around zero of radius ε. This probability is very easily477

and accurately estimated using a Monte Carlo approximation using draws from478

q4. We can then plot Pε,t vs. ε to obtain a visualization of the magnitude of our479

individual effects at each time point.480

Our estimate of this high-dimensional posterior distribution, q4, has the surprising481

characteristic that most of the probability mass lies within a thin shell far from the482

posterior mean (intuitively, this is because the volume of Bε grows exponentially483

with n). Therefore, we need some comparison for the Pε,t’s. It may be helpful to484

compare the posterior for ‖(s′1t, . . . , s′Kst
, r′1t, . . . , r′Krt

)‖ with the distribution of the485

magnitude of a N(0,
p(σ2

R+1)
(1−p)(Ks+Kr)

In(Ks+Kr)) random variable for some p ∈ (0, 1). The486

distribution of this comparative random variable arises from letting the ratio of487

variances in Equation (20) sum to a proportion p for these simultaneous dependence488

terms (and letting each of the Ks + Kr terms contribute equally); that is, what does489

the distribution of ‖(s′1t, . . . , s′Kst
, r′1t, . . . , r′Krt

)‖ look like if simultaneous dependence490

accounts for p(100)% of the variance of the A∗ijt’s compared with the inherent noise?491

Though there well may be better comparative distributions, what we have described492

provides a reasonable frame of reference by which we may evaluate the strength493

of the evidence of simultaneous dependence as given by the posterior distribution494

for the sender and receiver effects. By looking at the visualization rather than just495

the ratio of variance components, we do not throw away the effects of the off-496

diagonal elements of the covariance matrices Σst and Σrt nor the entirety of Σsrt497

when evaluating the evidence of the existence of simultaneous dependence.498
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Fig. 2. Empirical example of the visualization of the existence of simultaneous

dependence. The horizontal axis corresponds to the ε radius of a ball Bε about

zero, and the vertical axis is Pε,·. Each solid line corresponds to a time point

(T = 10), and the dotted lines correspond to the comparative random variable

having proportion of variance attributable to simultaneous dependence of, from left

to right, p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. The left panel corresponds to data generated

with simultaneous dependence and the right panel without.

The distribution of the magnitude of the comparative random variable can be499

evaluated in the following way. Let x ∼ Nn(0, σ
2In) (e.g., σ2 = p(σ2

R +1)/((1−p)(Ks+500

Kr))). Then, let Y 2 := x′x/σ2 ∼ χ2(n). Then Y ∼ χ(n) and thus501

�(‖x‖ � ε) = �(Y �
ε

σ
) =

γ(n/2, (ε/σ)2/2)

Γ(n/2)
, (22)

where γ(·, ·) is the lower incomplete gamma function. Using this we can directly502

compute Pε corresponding to this comparative random variable.503

Figure 2 provides an empirical demonstration of the proposed visualization504

technique using the results from an arbitrarily chosen simulated data set as described505

in Section 6; note that we used the variance of the estimated Rt’s as a proxy for506

σ2
R . The left panel corresponds to data generated with simultaneous dependence and507

the right panel without. The solid lines correspond to the individual effects at a508

particular time point, and the dotted lines correspond to the comparative noise for509

p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.510

6 Simulation study511

We performed a simulation study in order to investigate two things. First, what is512

the effect of ignoring simultaneous dependence when it exists? Second, what is the513

effect of modeling simultaneous dependence when it does not exist? Specifically, we514

wish to investigate the effects on the mean parameters, as these will typically be the515

parameters of interest to the researcher. To this end, we simulated 100 network data516

sets where there was simultaneous dependence and 100 without such dependencies.517
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Fig. 3. Posterior means of (a) β and (b) θ from analyzing the simulated

data sets described in Section 6. Note that θ3 and θ4 have been scaled

by 1/10 for visualization purposes. Horizontal dotted lines indicate true

values of the parameters; the true β equals (−2.5, 0.5,−2), and the true θ

equals (0.0075, 0.0075, 0.75, 0.75, 0.025, 0.025, 0.025,−0.05). Lightly shaded boxplots

correspond to accounting for simultaneous dependence in the model; dark shaded

boxplots correspond to ignoring the simultaneous dependence.

For each of these 200 data sets, we fit two models, one accounting for and the other518

ignoring these dependencies.519

Each simulated data set had n = 100 and T = 10. We incorporated two covariates520

as well as an intercept (i.e., p1 = 3). The first dyadic covariate was a binary521

variable taking values 0 or 1 with equal probability; this covariate was treated as522

constant over time. The second covariate was constructed by first simulating n AR(1)523

processes with autoregressive coefficient equal to 0.9 and transition variance equal524

to 0.05, and then at each time point taking the distance between the corresponding525

cross-sectional views of the AR(1) time series. The coefficients were then set to be526

β = (−2.5, 0.5,−2) for the intercept, first covariate, and second covariate, respectively.527

We set θ = (0.0075, 0.0075, 0.75, 0.75, 0.025, 0.025, 0.025,−0.05), corresponding to528

G1t, . . . ,G8t, respectively, where the G�t’s are as given in Section 2.6. Note that θ3 and529

θ4 needed to be on different scales, as these were the only coefficients corresponding530

to network structures taking values in {0, 1} rather than {0, 1, . . . , n − 1}. For the531

simulations with simultaneous dependence, we set τs2 = 0.2, τr2 = 0.1, the diagonal532

of Ω to be (0.25, 0.5), the off-diagonals of Ω equal to 0.1, and σ2
R = 0.5.533

The results are given graphically in Figure 3. Figure 3(a) shows the boxplots of the534

estimates of the 3× 1 vector β. The columns correspond to the true model, and the535

shade of the boxplots corresponds to whether or not simultaneous dependence was536

accounted for. From this, we see that in the presence of simultaneous dependence,537

our proposed approach does a much better job at estimating the true values of β538

than when the simultaneous dependence is ignored. In the absence of simultaneous539

dependence, with the exception of the intercept (arguably of little importance in540



Simultaneous and temporal autoregressive network models 17

most research settings) our proposed approach performs very comparably to the541

models that ignore simultaneous dependence. We can reach the same conclusions542

looking at Figure 3(b), which gives the boxplots of the estimates of the 8×1 vector θ.543

In summary, accounting for simultaneous dependence in the model is extremely544

important in obtaining more accurate estimates of the coefficients in the mean545

function, and doing so even in the absence of simultaneous dependence does not546

seem to do much harm in the estimation. If concerns persist, one may perform the547

visualization described previously, as seen in Figure 2, to determine whether or not548

to include simultaneous dependence in the final model.549

7 Data analyses550

We now look at two real data sets with the intent of illustrating how our approach551

can be implemented in practice both for directed and undirected data. In the last552

example, we illustrate the change in impact from simultaneous dependence as the553

time intervals vary from fine to coarse.554

7.1 Conference proximity network555

We first look at a proximity network taken from conference goers at The Last Hope556

Conference, collected and made available by the OpenAMD Project (OpenAMD,557

2008). The 2008 conference goers had the option to wear an RFID badge, which558

tracked their movements throughout the conference. Thus, we are able to construct559

a proximity network, connecting two actors if they spent time close to one another.560

This type of network is quite important in, e.g., infectious disease (Vanhems et al.,561

2013) and the study of human behavior and organization (Eagle & Pentland, 2006).562

Our undirected network data consisted of 1,190 actors over 29 hours (i.e., T = 29).563

We set Aijt(= Ajit) to be 1 if actors i and j visited the same location during the tth564

hour.565

Figure 4(a) shows the evidence of simultaneous dependence. From this plot, we see566

that there is very strong evidence of such dependencies even though the time intervals567

are rather fine (1 hour). Figure 4(b) shows the posterior means for the autoregressive568

terms when ignoring simultaneous dependence (dark gray) and when accounting for569

it (light gray). Notice that the estimates are, with the exception of stability, quite570

different; indeed, ignoring simultaneous dependence leads to a negative estimate571

for the effect of triangles, which seems very unlikely given previous work done on572

structural balance theory.573

7.2 World trade data574

The second data set that we consider here is that of a world trade network. We let575

Aijt be 1 if country i exports to country j at time t. This data were collected from576

the Correlates of War Project (Barbieri & Keshk, 2012; Barbieri et al., 2009). Along577

with the export/import data, we used as covariates religious makeup of a country578

(Maoz & Henderson, 2013), defense pacts, neutrality pacts, non-aggression pacts,579

and ententes (Gibler, 2009). We analyze this data in two ways. First, we focus on a580

larger number of countries that exist over recent years. We then look at a smaller581

subset of countries that all exist over a longer period of time and look at how the582

evidence for simultaneous dependence changes as the time intervals get coarser.583
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Fig. 4. Results from the AMD proximity network data. (a) Plot of Pε,t vs. ε.

Each solid curve corresponds to the individual effects from a particular time

point. The dotted lines correspond to the comparative random variable setting

p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. See Section 5 for details. (b) Posterior means for the

coefficients of θ. Dark gray indicates ignoring simultaneous dependence, while light

gray indicates accounting for this dependence in the model.

7.2.1 179 nations from 1993 to 2009584

We consider all countries that exist and are involved in trade on an annual basis over585

the period from 1993 to 2009. For each of these countries, we have the measurements586

of the proportion of their population that belongs to each of the main world religions587

and the sub-branches of these religions (a total of 30 categories). These measurements588

only occur once every 5 years, which we interpolated to construct annual religious589

data. We then constructed the dyadic covariates by taking the Hellinger distance of590

two multinomial distributions whose probability vectors equal those nations’ vector591

of proportions of religious adherents. Letting pit be the 30 × 1 vector of the ith592

nation’s proportion of religious adherents, this is equivalent to setting the dyadic593

covariate between i and j equal to
√

1−∑30
r=1

√
pitrpjtr . The four types of pacts594

each were simply binary variables indicating whether or not countries i and j were595

engaged in such a pact during year t.596

Figure 5(a) depicts the evidence of simultaneous dependence. From this, we see597

that we there is evidence of non-negligible simultaneous dependence, though much598

less so than in the AMD network data. Figure 5(b) shows the posterior means for599

the covariates and Figure 5(c) shows the same for the autoregressive terms, where600

again dark gray indicates ignoring simultaneous dependence and light gray indicates601

accounting for it in the model. As is consistent with the simulation results, when602

there is weaker simultaneous dependence in the data, these estimates are more in603

agreement. There are still some differences, mostly manifested in the attenuation of604

the estimates as well as more dramatic differences in the triadic effects.605
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Fig. 5. Results from the world trade network data. (a) Plot of Pε,t vs. ε.

Each curve corresponds to the random effects from a particular time point.

The dotted lines correspond to the comparative random variable setting p =

0.05, 0.1, 0.15, 0.2, 0.25, 0.3. See Section 5 for details. (b) Posterior means of the

covariates (β). Dark gray indicates ignoring simultaneous dependence, while

light gray indicates accounting for this dependence in the model. (c) Posterior

means of the autoregressive terms (θ). Dark gray indicates ignoring simultaneous

dependence, while light gray indicates accounting for this dependence in the

model.

7.2.2 Evaluating the effect of the time interval on simultaneous dependence606

As we have just seen, even at annual increments we see the presence of simultaneous607

dependence. We now show how this presence increases as the time intervals become608

coarser. We now consider the time interval from 1900 to 2000. This naturally609

diminishes the number of nations that exist during the entirety of the specified time610
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Fig. 6. World trade data: Plots of Pε,t vs. ε. Each curve corresponds to the random

effects from a particular time point. The dotted lines in each figure correspond to the

comparative random variable setting p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. See Section 5 for

details. Coarser time intervals lead to stronger evidence of simultaneous dependence.

(a) Annual. (b) Every 5 years. (c) Every 10 years. (d) Every 20 years. (e) Every 25

years.

interval, and we are left with 28 nations. We apply our model to these 28 nations611

looking at every year, every 5 years, every 10 years, every 20 years, and every 25612

years. Intuition (as well as previous work by Lerner et al., 2013) tells us that the613

simultaneous dependence should grow as the time interval becomes larger, and in614

fact this is what we see.615

Figure 6 gives the evidence of the simultaneous dependence for the five data616

sets. We can see that simultaneous dependence increases with the coarseness of the617

time interval, as shown by the increasing trend for the location of the thin shell of618

posterior probability mass for the individual effects. To corroborate this, we also619

implemented the TERGM model on the five different data sets (collected every 1,620

5, 10, 20, and 25 years). To capture the simultaneous dependencies, we included as621

ERGM terms the counts of reciprocated ties, transitive triangles, and three-cycles.622

Figure 7 shows the trends of these parameter estimates for the five data sets, where623

the values for each parameter have been normalized by the corresponding parameter624

value from the 25 year interval data. We see that the strength of the effect sizes625

increase as the time between observations increases (we actually show the negative626

of the three-cycle coefficients for visual clarity), thus corroborating our finding that627

the simultaneous dependence does in fact increase.628
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Fig. 7. TERGM coefficient estimates for reciprocity (solid), transitive triples (dotted),

and cyclic triples (dash-dot) (negative coefficients given for the cyclic triples).

Horizontal axis corresponds to the spacing of observations for the data set used.

The increasing trend in the strength of the effect sizes corroborates our finding of

increasing simultaneous dependence.

8 Discussion629

In this paper, we have adapted the dynamic logistic network regression model630

of Almquist & Butts (2013) by introducing a framework for capturing not631

only temporal dependencies through an autoregressive mean structure but also632

simultaneous dependence through an autoregressive covariance structure. We633

demonstrated that ignoring simultaneous dependence leads to negative inferential634

consequences. The methods outlined here account for both complex temporal and635

simultaneous dependencies in a parsimonious way, while keeping within a familiar636

framework.637

Like many other statistical models for network data, scalability is an issue for638

all but very simple simultaneous dependence structures. While the VB estimation639

method proposed for the STAR model is quick for small to medium data sets, the640

requirement to invert large covariance matrices prohibits this methodology in its641

current state from being scaled up to extremely large networks.642

We have also described how our work may be placed within the familiar GLMM643

framework. While it is beyond the scope of this paper to thoroughly discuss644

model selection problems involving, e.g., covariance structures or link functions,645

it is the author’s hope that previous and ongoing GLM and GLMM research (e.g.,646

Chen & Tsurumi, 2010) can be used to build upon the proposed work in this area.647

Further, while we have shown practical operationalizations of the proposed method648

for binary data in Section 2.6, we leave it for future work to describe the specifics649

of sophisticated covariance structures (i.e., H·,t’s that are more complicated than In)650

for other data types.651

Other future work that would be valuable to the network analysis community652

would be to provide a thorough comparison of the available methods for discrete653
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temporal network data, such as the proposed approach, TERGM (Hanneke et al.,654

2010) and STERGM (Krivitsky & Handcock, 2014), latent space models for655

dynamic networks (Durante & Dunson, 2014; Sewell & Chen, 2015), and dynamic656

stochastic blockmodels (Xing et al., 2010). It would be important to know which657

method ought to be used in various contexts, and under what circumstances the658

conclusions from these models might differ.659
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Appendix A: Closed-form updates for VB787

Before giving the closed form of the q’s, let us first provide a little notation that will788

be used. Let I− = Jn − In, i.e., the matrix of ones with zeros on the diagonal. Let789

tr(A) be the trace of some square matrix A. For a matrix Σ, let Σ(i,j) denote the 2×2790

submatrix obtained from the ith and jth rows and columns. LetA−
t denote vec−

(
A∗t

)
.791

Let trN(μ,Σ) be the truncated normal; we will not add any notation specifying the792

varying domain as this should be obvious in our context from the data, which A∗ijt793

are restricted to the positive reals and which to the negative reals. Finally, let �Xt794

denote the n(n− 1)× (p1 + p2) matrix such that795

�Xt = (vec−(X1t) , . . . , vec
−(Xp1t

)
, vec−(G1t) , . . . , vec

−(Gp2t

)
).

Result 1. q1(β, θ)
D
= N(μm,Σm), where796

Σ−1
m = diag(1/σ2

β, . . . , 1/σ
2
β, 1/σ

2
θ , . . . , 1/σ

2
θ) +

T∑
t=1

�X ′t�X,

μm = Σm

(
T∑
t=1

�X ′t(MAt
− vec−

(
(μs1t

+ μs2t
)1′

)− vec−
(
1(μr1t

+ μr2t
)′
)− vec−

(
MRt

)
)

)
.

797
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Result 2. q2(τs2, τr2,Ω)
D
= IG(as, bs)IG(ar, br)IW (aΩ, BΩ) where798

as = as0 + nT/2 bs = bs0 + 1
2

∑T
t=1

[
tr(Σ̃srt(s)H

−1
st ) + μ′s2tH

−1
st μs2t

]
ar = ar0 + nT/2 br = br0 + 1

2

∑T
t=1

[
tr(Σ̃srt(r)H

−1
rt ) + μ′r2tH

−1
rt μr2t

]
aΩ = aΩ0 + nT BΩ = BΩ0 +

∑
t=1

∑n
i=1

[
Σ̃srt(sr)(i,n+i) + (μs1ti

, μr1ti
)′(μs1ti

, μr1ti
)
]
,

Σ̃srt(s) is the first n rows and first n columns of Σ̃srt, Σ̃srt(r) is the second n rows and799

second n columns of Σ̃srt, and Σ̃srt(sr) is the last (2n) rows and (2n) columns of Σ̃srt.800

Result 3. q3({A−
t }Tt=1)

D
=

∏T
t=1 trN(MAt

, I) where801

MAt
= �Xtμm + vec−

(
(μs1t

+ μs2t
)1′

)
+ vec−

(
1(μr1t

+ μr2t
)′
)

+ vec−
(
MRt

)
.

802
Result 4. q4({s1t, r1t, s2t, r2t}Tt=1)

D
=

∏T
t=1 N

(
(μ′s1t, μ

′
r1t
, μ′s2tμ

′
r2t

)′, Σ̃srt

)
, where803

Σ̃−1
srt =

⎛⎜⎜⎝
1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

⎞⎟⎟⎠⊗ (n− 1)In +

⎛⎜⎜⎝
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎞⎟⎟⎠⊗ I−

+

⎛⎜⎜⎝
aΩB

−1
Ω ⊗ In 0

0
as
bs
H−1

s1t 0

0 ar
br
H−1

r1t

⎞⎟⎟⎠
804

⎛⎜⎜⎝
μs1t

μr1t

μs2t

μr2t

⎞⎟⎟⎠ = Σ̃srt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
rev-vec−

(
MAt
− �Xtμm

)
−MRt

)
1(

rev-vec−
(
MAt
− �Xtμm

)′ −MRt

)
1(

rev-vec−
(
MAt
− �Xtμm

)
−MRt

)
1(

rev-vec−
(
MAt
− �Xtμm

)′ −MRt

)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and rev-vec−(·) is the matrix (with zero diagonal elements) constructed by reversing805

the vec−(·) operator.806

Derivation:807

We first provide some preliminary results:808

1. For some n × 1 vectors a1 and a2, tr(Da1
I−I−Da2

) = (n − 1)a′1a2, where Da809

denotes a diagonal matrix whose entries are a.810

2. For some n× n matrix A, tr(I−Da(A ◦ I−)) = a′(A ◦ I−)1.811

3. tr(I−Da1
I−Da2

) = a′1I−a2.812

Also note that since vec−(A)′ vec−(A) = vec(A◦I−)′vec(A◦I−) = tr((A◦I−)′(A◦I−)), we813

may consider the conditional probability of At|s1t, r1t, s2tr2t, · as proportional (with814

respect to the sender and receiver effects) to the matrix normal distribution kernel815

of A∗t ◦ I−.816
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Letting Ãt = (A∗t − 〈β,Xt〉+ 〈θ,Gt〉) ◦ I−, we have, dropping the subscript t,817

log(π(A∗|s1, r1, s2, r2, ·))
= const− 1

2
tr

[
(Ã− Ds1I

− − Ds2I
− − I−Dr1 − I−Dr2)

′

× (Ã− Ds1I
− − Ds2I

− − I−Dr1 − I−Dr2)
]

= const− 1

2
tr

[
I−Ds1Ds1I

− − 2I−Ds1Ã + 2I−Ds1Ds2I
− + 2I−Ds1I

−Dr1

+2I−Ds1I
−Dr2 − 2I−Ds2Ã + I−Ds2Ds2I

− + 2I−Ds2I
−Dr1 + 2I−Ds2I

−Dr2

+Dr1I
−I−Dr1 + 2Dr1I

−I−Dr2 + Dr2I
−I−Dr2 − 2Dr1I

−Ã− 2Dr2I
−Ã

]
= const− 1

2

[
(n− 1)s′1s1 − 2s1Ã1 + 2(n− 1)s′1s2 + 2s′1I−r1 + 2s′1I−r2 − 2s′2Ã1

+(n− 1)s′2s2 + 2s′2I−r1 + 2s′2I−r2 + (n− 1)r′1r1 + 2(n− 1)r′1r2 + (n− 1)r′2r2

−2r′1Ã′1 − 2r′2Ã′1
]
.

Combining the expected value of this under q with �q(log(π(s1t, r1t, s2t, r2t|τs2, τr2,Ω,818

At−1))) yields Result 4. �819

Result 5. q5({Rt}Tt=1)
D
=

∏
t

∏
i<j N(MRt

[i, j], σ̃2
R) where820

MRt
[i, j] = σ̃2

R(Ãijt + Ãjit),

σ̃2
R =

bR/aR

1 + 2bR/aR
,

Ãijt = rev-vec−
(
MAt
− �Xtμm

)
[i, j]− μs1t

[i]− μs2t
[i]− μr1t

[j]− μr2t
[j].

For the purposes of computing the parameters for the other q’s, assume for i < j that821

MRt
[j, i] = MRt

[i, j].822

Result 6. q6(σ
2
R)
D
= IG (aR, bR) where823

aR = aR0 +
Tn(n− 1)

4

bR = bR0 +
1

2

∑
t

∑
i<j

(
σ̃2
R + MRt

[i, j]2
)

Result 7. For the undirected case, q4({st}Tt=1) =
∏T

t=1 N(μ′st, Σ̃st), where824

μst = Σ̃st�(A∗t ◦ I−)1
Σ̃−1
st = (n− 1)In + I− +

as

bs
H−1

st

Derivation: Define I� as the square matrix with ones on the upper triangle and zero825

everywhere else (the diagonal is also zero). As before, it is helpful to provide some826

preliminary results:827

1. For some n× 1 vector a, tr(Da(I
�I�′ + I�′I�)a) = (n− 1)a′a.828

2. For some n× n matrix A,829

tr(Da(Ã
′I� + ÃI�

′
)) = tr(DaI

−A) = a′(A ◦ I−)1.
3. 2 · tr(DaI

�′DaI
�) = a′I−a.830



Simultaneous and temporal autoregressive network models 27

To show this last, note that the ith diagonal of DaI
�′DaI

� =
∑i−1

j=1 aiaj , and831

hence the trace equals
∑n

i=1

∑i−1
j=1 aiaj = a′I�′a = a′I�a. This then implies that832

2 · tr(DaI
�′DaI

�) = a′I�′a + a′I�a = a′I−a.833

Let Ãt = (A∗t − 〈β,Xt〉 − 〈θ,Gt〉) ◦ I�. Then we have, dropping the subscript t,834

log(π(A∗t |s))
= const− 1

2
tr

[
(Ã− DsI

� − I�Ds)
′(Ã− DsI

� − I�Ds)
]

= const− 1

2
tr

[
Ds(I

�I�
′
+ I�

′
I�)Ds + 2DsI

�′DsI
� − 2Ds(Ã

′I� + ÃI�
′
)
]

const− 1

2

[
s′
(
(n− 1)I + I− +

1

τs
H−1

s

)
s− 2s′(A∗ ◦ I−)1

]
.

Combining the expected value of this under q with �q(log(π(st|τs, At−1))) yields835

Result 7. �836

Appendix B: Proofs837

B.1 Proposition of Section 2.3838

Proof. Letting mijt = 〈β,Xt〉[i, j] + 〈θ,Gt〉[i, j] and V := Var(sit + rjt), we have839

�(Aijt = 1|β, θ) = �
(
�

(
Aijt|sit + rjt, β, θ

)|β, θ)
= �

(
Φ

(
sit + rjt + mijt√

Var(Eijt)

)∣∣∣β, θ)

=

∫ ∞

−∞

∫ sit+rjt+mijt√
Var(Eijt )

−∞
1√
2π

e−
Z2

2
1√
2πV

e−
(sit+rjt )

2

2V dZd(sit + rjt)

= �(Z
√
Var(Eijt)− (sit + rjt) < mijt).

Since Z
√
Var(Eijt)− (sit + rjt) ∼ N(0, Var(Eijt) + V ), our result holds.840

B.2 Theorem of Section 2.4841

Proof. It is obvious that the mean of each A∗ijt are equivalent for (I), (II), and (III),842

and that the covariance between any A∗ijt and A∗k�t as given by (III) satisfies Equation843

(4).844

It is straightforward to check that σ2
RMR +(σ2

ε +σ2
R)In2 satisfies the final two terms845

in Equation (4), and that this is the covariance matrix of vec(Et). Note that for any846

two n-dimensional vectors a and b, we have that847

1. vec(ab′) = b⊗ a,848

2. Cov(1 ⊗ a) = Jn ⊗ Cov(a),849

3. Cov(a⊗ 1) = Cov(a)⊗ Jn, and850

4. Cov(1 ⊗ a, b⊗ 1) = 1 ⊗ Cov(a, b)⊗ 1′,851
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where Jn is the n × n matrix of 1’s. We may then write the covariance of the A∗ijt’s852

as given in (III) as853

Cov(At) = Cov(vec(st1
′) + vec(1r′t) + vec(Et))

= Cov(1 ⊗ st + rt ⊗ 1 + vec(Et))

= Jn ⊗ Σst + Σrt ⊗ Jn + 1 ⊗ Σsrt⊗ 1′+ 1′ ⊗Σ′srt⊗ 1 + σ2
RMR + (σ2

ε + σ2
R)In2 .

Hence (I), (II), and (III) have the same covariance structure.854

Finally, we have from (III)855

At = vec(〈β,Xt〉+ 〈θ,Gt〉) + 1 ⊗ st + rt ⊗ 1 + vec(Et)

= vec(〈β,Xt〉+ 〈θ,Gt〉) +
(
1 ⊗ In

)
st +

(
In ⊗ 1

)
rt + vec(Et)

D
= vec(〈β,Xt〉+ 〈θ,Gt〉) +

((
1 ⊗ In, In ⊗ 1

)
Σ

1
2
t ,

(
σ2
RMR + (σ2

ε + σ2
R)In2

) 1
2

)
z

where z is a (2n+ n2)× 1 vector of independent standard normal random variables,856

and857

Σt :=

(
Σst Σsrt

Σ′srt Σrt

)
,

Since vec(At) is an affine transformation of z, we have that the A∗ijt’s are jointly858

normal, indicating that (I), (II), and (III) are equivalent.859




