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Abstract

Relational data can be studied using network analytic techniques which define the
network as a set of actors and a set of edges connecting these actors. One important
facet of network analysis that receives significant attention is community detection.
However, while most community detection algorithms focus on clustering the actors
of the network, it is very intuitive to cluster the edges. Connections exist because they
were formed within some latent environment such as, in the case of a social network,
a workplace or religious group, and hence by clustering the edges of a network we may
gain some insight into these latent environments. We propose a model-based approach
to clustering the edges of a network using a latent space model describing the features
of both actors and latent environments. We derive a generalized EM algorithm for
estimation and gradient-based Monte Carlo algorithms, and we demonstrate that
the computational cost grows linearly in the number of actors for sparse networks
rather than quadratically. We demonstrate the potential impact of our proposed
approach on a patient transfer network, verifying these results by running simple
epidemic simulations, and on a real friendship network amongst faculty members at
a university in the United Kingdom.

Keywords: Community detection; Latent space models; Network analysis; Social networks
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1 Introduction

Network analysis is an ever expanding analytical toolbox providing researchers the ability to

study relational data to better understand and predict natural phenomena. An important

facet of network data analysis is community detection, the unsupervised clustering of the

actors in the network based on their relations, or edges. This topic is one of the most

widely researched in the field of network analysis. An excellent introduction and survey of

community detection is given in Fortunato (2010). This is by no means the only survey

of community detection, and in fact there is even an increasing number of surveys of

subtopics within community detection such as evolutionary algorithms (Cai et al., 2016;

Pizzuti, 2018), dynamic networks (Enugala et al., 2015), online social networks (Dhumal

and Kamde, 2015), and directed networks (Malliaros and Vazirgiannis, 2013).

While many algorithms and statistical models assume that actors belong to only one

community, more sophisticated methods acknowledge this unrealistic constraint by allowing

overlapping communities to exist. That is, an actor in the network may belong to multiple

communities. While Xie et al. (2013) provides a survey of such overlapping community

detection methods, the primary model-based overlapping community detection method is

the mixed-membership stochastic blockmodel (MMSB) (Airoldi et al., 2008). It is easy

to argue that the MMSB and other overlapping community detection methods present a

much more realistic representation of observed networks than those approaches assigning a

single cluster to each actor. Despite this, some authors and practitioners find difficulties in

interpreting the output from such algorithms, which typically assign a “belonging factor”

to each actor, i.e., a compositional vector to each actor describing the proportion to which

that actor belongs to each community. For example, Ahn et al. (2010) (pg. S9) states,

It is, however, often more natural to consider each node as a full member of

its communities. A person’s family would be disappointed if anyone proclaimed

that he or she was only 1/5th of a member of it; in the metabolic network, it

would also be strange to say that H2O was only 1/200th a member of a given

pathway.

This paper focuses not on clustering the actors of a network but on clustering the edges.
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A simple method of clustering the edges would be to first cluster the actors and then group

the edges according to the clusters of the incident actors. This, however, still relies on

the premise that each actor belongs to a single community. In contrast, we believe that

in many or perhaps most cases it can be assumed that if two actors form an edge it is

because they have engaged or participated in a common activity or group. For example,

an individual might be friends with one person because they work at the same company,

while friends with another person because they both belong to the same sailing club. Kim

and Jeong (2011) states (pg. 026110-1),

From the theoretical point of view, the community of link could be more

intuitive than the community of node in some real-world networks, because

the link is more likely to have a unique identity while the node tends to have

multiple identities.

In addition, it is very natural to think of temporary contexts in which multiple edges may

form, e.g., several friendships which form at some one time event, whereas such an edge-

inducing event does not have as clear an interpretation within frameworks which cluster

the actors into communities.

Despite edge clustering being a very intuitive way of understanding the community

structure of the network, significantly less work has been devoted to the area of edge

clustering in comparison with traditional actor clustering approaches. Almost all of the

extant edge clustering methods are algorithmic rather than model-based. One of the earliest

approaches to clustering edges came from Pereira-Leal et al. (2004), in which a method was

given to first construct a line graph1 and then perform community detection on that line

graph by optimizing the modularity. Similar approaches have been taken by constructing

a line graph and applying standard (non-overlapping) community detection algorithms on

it (Evans and Lambiotte, 2009, 2010; Wu et al., 2010). Ahn et al. (2010) first developed a

somewhat different approach in which rather than building a line graph, a distance matrix

is constructed on the edges of the network and standard clustering techniques are then

1A line graph can be thought of as reversing the roles of edges and actors; edges are (typically) connected

in a line graph if they are incident on a common actor.
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applied; genetic algorithms were applied to Ahn et al.’s approach by Shi et al. (2013) and

Bello-Orgaz et al. (2018). Similar approaches were taken by Kim and Kim (2015); Deng

et al. (2017); Zhang et al. (2018).

In contrast with algorithmic approaches, model-based community detection is more

satisfactory and allows one to make future predictions, infer missing data, quantify the

uncertainty of one’s estimates, and use likelihood-based information criteria to choose the

number of clusters. To the author’s knowledge, there is only one model-based approach to

edge clustering, namely that given in Ball et al. (2011). This approach uses a Poisson model

for undirected and unweighted networks, modeling each actor’s propensity to form edges

of a certain type. The authors ignore some inherent constraints in the data; specifically

they allow self-loops and multiple edges between a pair of actors, and in so doing gain

considerable computational speed.

This paper develops statistical methods for model-based edge clustering. Detecting

clusters of edges allows one to identify either systems of flows in the network or latent

groups that facilitate edges. The latter case corresponds to scenarios in which there are

latent activities, groups, places, or some other set of contexts in which edges form, as

tends to be the case for, e.g., social networks. The former case corresponds to contexts

in which information, disease transmission, or some other flow is of interest. In such a

case, a network having community structure with respect to the edges can be viewed as a

collection of systems of flows, where each system acts as a set of pipes (edges) which tend

to feed into each other. To understand this analogy of pipes, one can imagine a set of pipes

with water flowing through them, finding an access point in one of these pipes and pouring

a dye inside. The idea is that the pipes belonging to the same system of flows as that of

the initially accessed pipe will all soon be transporting the dyed water, whereas it would

be much later before pipes belonging to different systems of flows would carry dyed water.

That is, information/disease/etc. cascades quickly through edges within a system of flows

due to the interconnectedness of the edges, while this cascade takes longer before reaching

and flowing through edges in other systems. For graphical illustrations of these two edge

clustering scenarios, see Figure 1.
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The contribution of this paper lies in the development of a network model designed to

cluster edges and a scalable estimation algorithm2. We use a latent space approach, which

has an intuitive motivation. Although there has been some promising work on scalability

for latent space models (LSMs) (e.g., Raftery et al., 2012; Salter-Townshend and Murphy,

2013; O’Connor et al., 2015; Rastelli et al., 2018), LSMs are notoriously slow, often requiring

long MCMC runs where the computational cost of each iteration is O(n2), where n denotes

the number of actors in the network. In contrast, the computational cost of the likelihood

of our proposed model is linear in the number of edges, although care must be taken during

estimation to keep the computational cost at this low level. We propose a fast generalized

EM (GEM) algorithm, as well as guidance on gradient-based Monte Carlo algorithms, to

perform estimation of the edge clustering model.

We describe our model, the model’s motivation, and estimation in Section 2. In Section

3 we provide a simulation study to test various information criteria on selecting the dimen-

sion of the latent space and the number of clusters simultaneously, as well as to evaluate

the overall accuracy of our estimation algorithm. In Section 4 we analyze two real datasets

in order to illustrate the practical usefulness of our approach. The first is a patient trans-

fer network among hospitals in California where we identify systems of flows of patients.

We then run an epidemic simulation based on this empirical network demonstrating how

identifying such systems of flows can help understand how an epidemic might spread. The

second is a friendship network consisting of faculty members at a university in the United

Kingdom demonstrating how our approach can be used to identify the environments in

which friendships form. We then end with a discussion in Section 5.

2 Method

A network is a mathematical representation of relational data consisting of a set of n actors

A = {1, 2, . . . , n} and a set of M edges E ⊂ A×A. Implicit in all statistical network models

is that the likelihood implicitly conditions on the number of actors n. In our proposed

model, we also implicitly condition on the number of edges M . This makes sense in the

2R code provided at https://myweb.uiowa.edu/dksewell/Code.html
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(a) Illustration of latent contexts via an ego-network

for a hypothetical Biostatistics faculty member at a

research institution. The ego has collaborations with

others in her department, with others due to partic-

ipation in a university-wide informatics research ini-

tiative, and with still others due to belonging to the

same university.
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(b) Illustration of systems of flows.

For example, if disease were to

flow from A to B, we might soon

see the disease continue to flow

through, e.g., the edges (A,C),

(B,C), (B,D), (C,D), and (D,A),

but not through, e.g., (F,H).

Figure 1: Pedagogical illustrations of edge clustering.

context of edge clustering, as we only care to cluster those edges which were observed. In

what follows, we assume that self-loops are invalid, i.e., E ⊆ SA := {(i, j) : i, j ∈ A, i 6= j}.

We also assume that the network is directed, i.e., the order of each element e = (i, j) ∈ E

is non-ignorable. That is, the relations have an inherent direction to them. Our model and

approach could be easily adapted to handle undirected networks.
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2.1 Model

Most statistical network models are actor centric, modeling the joint distribution of {Aij}(i,j)∈SA ,

where Aij equals one if (i, j) ∈ E and zero otherwise, i.e., the focus is on asking “given

actors i and j, what is the probability that there is an edge between them?” In contrast,

our approach is edge centric, modeling the joint distribution of {em}Mm=1, i.e., the focus is

on asking “given we have an edge, what is the probability that it connects actors i and j?”

The fundamental difference between these two paradigms is that which is viewed as the

unit of observation. The actor centric view treats the dyads as the units of observation,

leading to n(n − 1) observations of SA, whereas the edge centric view treats the edges as

the units of observation, leading to M observations of E . Interestingly, a prominent and

groundbreaking LSM paper using an actor centric statistical framework advocated for the

idea of treating M as the number of observations in computing information criteria (Hand-

cock et al., 2007). Most often networks are sparse, implying that M << n(n− 1), and in

fact if we suppose that the average degree does not grow with n, then M = O(n). This

immediately implies that the cost of evaluating the likelihood for an edge centric model

will in many (or perhaps most) cases be linear in n rather than quadratic as is the case

with actor centric models.

The main idea behind the model formulation is this: an edge taking place in a par-

ticular environment will most likely connect actors which share some features with that

environment. As alluded to in the introduction, these environments may take two forms.

First, the edges form systems of flows, where within each system the edges have a common

set of features. These edges then connect actors which share these features in some way.

For example, in a patient transfer network where the actors are the hospitals and the edges

are the patients being shared, features of a system of flows may correspond to a geospatial

region where patients live, a common health insurer, or a set of patient morbidities. Hos-

pitals are likely to be linked through edges in a system due to belonging to that geospatial

region, holding a contract with a common health insurer (i.e., being “in network” for a

particular insurer), or sending/receiving patients due to an absence/presence of medical

specialization. Second, a set of edges form due to the participants engaging in a common
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latent group. For example, within a friendship network a hiking club may attract mem-

bers who are environmentalists, enjoy exercise, etc. and through this hiking club many

friendships may form amongst its members.

Let the edges be denoted as em = (em1, em2) so that E = {em}Mm=1. Let K be the

number of latent classes of edges. Let Z be the M ×K matrix such that Zmk equals one

if the mth edge belongs to class k and zero otherwise. Let U be the n × p matrix such

that the ith row U i is the ith actor’s latent sending features, similarly let V be the n × p

matrix such that the ith row V i is the ith actor’s latent receiving features, and let W be the

K×p matrix such that the kth row W k is the kth edge class’ latent features, where p is the

number of latent features. Finally, let S = (S1, . . . , Sn) and R = (R1, . . . , Rn) be the actor

specific overall propensities to send and receive edges respectively, thereby accounting for

degree heterogeneity. Then the latent space edge clustering (LSEC) model is given by

π(E|Z) =
M∏
m=1

K∏
k=1

[
π(em|Zmk = 1)

]Zmk ,

=
M∏
m=1

K∏
k=1

[
π(em1|Zmk = 1)π(em2|em1,Zmk = 1)

]Zmk ,

π(em1 = i|Zmk = 1) =
eSi+U iW

′
k

fuk
,

π(em2 = j|em1 = i,Zmk = 1) =


eRj+V jW

′
k

fvk−e
Ri+V iW

′
k

if j 6= i

0 otherwise,

fuk =
n∑
i=1

eSi+U iW
′
k ,

fvk =
n∑
i=1

eRi+V iW
′
k . (1)

Implicitly we are also always conditioning on (S,R,U ,V ,W ), but for the sake of space

we have omitted this dependence.

Note that in the same spirit as actor centric LSMs, the edges are conditionally indepen-

dent given the latent features of the actors and edge classes. Given these latent features,

the conditional probability of an edge m connecting two actors i and j follows a product

of two multinomial distributions, where the source (from which the edge originates) of the
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directed edge is chosen first from all n actors, and then given the source actor, the target

actor (towards which the edge is directed) is chosen from the remaining n− 1 actors.

We choose to work within a Bayesian framework, and hence we must place priors on the

unknown quantities (S,R,U ,V ,W ,Z). Of course these priors will vary from researcher

to researcher and from context to context, but the general form we assume in our estima-

tion algorithm in Section 2.3 is

U i
iid∼ N(0, τuIp), τs ∼ Γ(as/2, bs/2),

V i
iid∼ N(0, τvIp), τr ∼ Γ(ar/2, br/2),

W k
iid∼ N(0, Ip), τu ∼ Γ(au/2, bu/2),

Si
iid∼ N(0, τs), τv ∼ Γ(av/2, bv/2),

Ri
iid∼ N(0, τr), α ∼ Dir(α01K),

Zm
iid∼ Multinom(1,α), (2)

where N(a,B) denotes the multivariate normal distribution with mean a and precision ma-

trix B, Γ(a, b) denotes the gamma distribution with shape a and rate b, Multinom(n, a)

denotes the multinomial distribution drawing n times from probability vector a, Dir(a) de-

notes the dirichlet distribution with shape parameters a, and 1K denotes the K-dimensional

vector of ones. Figure 2 gives a schematic for the LSEC model parameters.

The multinomial prior on the latent edge classes implies the marginal likelihood of the

edges is the mixture distribution given by

π(E) =
M∏
m=1

K∑
k=1

αk
exp{Sem1 +Rem2 + (Uem1 + V em2)W

′
k}

fuk

(
fvk − exp{Rem1 + V em1W

′
k}
) . (3)

The proposed LSEC model is an edge exchangeable network distribution restricted to

binary edges (that is, not hypergraphs). This class of models formally introduced by Crane

and Dempsey (2018) (see also, e.g., Broderick and Cai, 2015; Janson, 2018) treats the edges

as the fundamental units of observation. A network E = {em}Mm=1 based on a mapping

φ0 : {1, 2, . . . ,M} 7→ A × A (so em = φ0(m)) is an edge exchangeable network if for any

permutation σ : {1, . . . ,M} 7→ {1, . . . ,M}, Eσ
D
= E , where the network Eσ = {eσ(m)}Mm=1
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Figure 2: Schematic of the LSEC model.

is that which is induced by the mapping φ1(m) := φ0(σ(m)). Probability distributions are

built for edge exchangeable networks by (for the binary edge context) placing a probability

distribution over A×A and having each edge be an iid draw from this distribution.

2.2 Motivation by latent group participation

As can be seen in (1), the more similar an actor’s features are to that of an edge class, the

higher the likelihood that an edge of that class will involve that actor. For the case where

these edge classes correspond to latent groups, we may go a step further and consider the

binary participation of each of the actors. Suppose in a social network we knew which

workplaces, social clubs, religious organizations, etc. to which each actor belonged, and

we wished to model the probability that a friendship formed through the kth such group

connected actors i and j. It seems reasonable to model this probability as a function of

i’s overall tendency to send edges, call it S̃i, j’s overall tendency to receive edges, call it

R̃j, and whether or not actor i (j) participates in group k in a capacity which facilitates

sending (receiving) edges, call it Zu
ik (Zv

jk) taking values of 0 or 1. Then using a linear
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model we would have

P(em = (i, j)|Ze
mk = 1) ∝ eηk,ij , (4)

ηk,ij := S̃i + R̃j + βuZ
u
ik + βvZ

v
jk,

where Ze
m is the 0-1 vector corresponding to the mth edge class (what in the preceding

sections was denoted simply as Zm), and βu and βv are regression coefficients. Now in

practice we will not generally have this participation information. However, we can view

participation in these latent groups as an unobserved bipartite network of actors and groups

and employ a random dot product graph model (Young and Scheinerman, 2007). That is,

the probability that actor i participates in group k as a sender is P(Zu
ik = 1) = Ũ iW̃

′
k

and as a receiver is P(Zv
ik = 1) = Ṽ iW̃

′
k, which again follows from the same logic as

before, that an actor which shares features similar to a latent group will be more likely to

participate in that group.

Since we do not know Zu
ik or Zv

jk, it seems reasonable to replace ηk,ij with its expected

value. In so doing we have

P(em = (i, j)|Ze
mk = 1)

∝ exp{S̃i + R̃j + βuŨ iW̃
′
k + βvṼ jW̃

′
k}

∝ exp

{(
S̃i + βuŨ iW̃

′)
+
(
R̃j + βvṼ jW̃

′)
+βu

(
Ũ i − Ũ

)(
W̃ k − W̃

)′
+ βv

(
Ṽ j − Ṽ

)(
W̃ k − W̃

)′}
= exp

{
Si +Rj +U iW

′
k + V jW

′
k

}
(5)

where

Si := S̃i + βuŨ iW̃
′
, U i :=

√
βu
βv

(
Ũ i − Ũ

)
,

Rj := R̃j + βvṼ iW̃
′
, V j :=

√
βv
βu

(
Ṽ j − Ṽ

)
,

and W k :=
√
βuβv

(
W̃ k − W̃

)
.

This then matches the LSEC model of (1).
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2.3 Estimation

2.3.1 Generalized EM

We propose using a generalized EM algorithm (Dempster et al., 1977) to obtain the

maximum a posteriori (MAP) estimates of the unknown quantities, where the E step

is the expectation of Z|E , and the M step is the maximization with respect to θ :=

{S,R,U ,V ,W , τs, τr, τu, τv,α}. The E step can be computed exactly. However, there are

no closed form solutions for the M step. Instead we take a coordinate ascent approach,

increasing the output of the E step (the expectation of the log posterior) incrementally

rather than attempting to converge to the maximum at each iteration.

First, it should be noted that Zm|E ,θ follows a multinomial distribution with proba-

bilities proportional to

αk exp{Sem1 +Rem2 + (Uem1 + V em2)W
′
k}

fuk (fvk − exp{Rem1 + V em1W
′
k})

. (6)

The complete likelihood is given as

π(E ,Z|θ) =
M∏
m=1

K∏
k=1

αk exp{Sem1 +Rem2 + (Uem1 + V em2)W
′
k}

fuk

(
fvk − exp{Rem1 + V em1W

′
k}
)

Zmk

, (7)

and hence, letting θ̃ denote the current estimate of θ, the quantity we wish to maximize is

Q(θ|θ̃) :=
K∑
k=1

M∑
m=1

pmk

{
Sem1 +Rem2 + (Uem1 + V em2)W

′
k

− log(fuk)− log
(
fvk − eRem1+V em1W

′
k

)}
− τs

2
‖S‖2 − τr

2
‖R‖2 − τu

2
‖U‖2F −

τv
2
‖V ‖2F −

1

2
‖W ‖2F

+

(
as + n

2
− 1

)
log τs −

bsτs
2

+

(
ar + n

2
− 1

)
log τr −

brτr
2

+

(
au + np

2
− 1

)
log τu −

buτu
2

+

(
av + np

2
− 1

)
log τv −

bvτv
2

+
K∑
k=1

(α0 + p·k − 1) logαk, (8)

where pmk is the (normalized) posterior probability from (6) (which is implicitly a function

of θ̃, not θ), and p·k =
∑

m pmk.
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Given the current estimates of S, R, U , and V , the maximizing values of τs, τr, τu, τv,

and α can be found explicitly as

τ̂s =
as + n− 2

bs + ‖S‖2
, τ̂u =

au + np− 2

bu + ‖U‖2F
,

τ̂r =
ar + n− 2

br + ‖R‖2
, τ̂v =

av + np− 2

bv + ‖V ‖2F
,

and α̂k =
α0 + p·k − 1

Kα0 +M −K
. (9)

Updating {S,R,U ,V ,W } requires more care, as there is no analytical solution to

this optimization problem. Further, because the size of this set is O(n), we cannot rely

on any optimization algorithm which utilizes second derivatives such as Newton-Raphson

or quasi-Newton approaches without incurring unacceptable computational cost and mem-

ory requirements. To this end we employ a conjugate-gradient approach to maximize

{S,R,U ,V ,W } given the current estimate of {τs, τr, τu, τv,α}. Before giving these gra-

dients, we first introduce a little more notation. First, let Mi1 := {m : em1 = i} and

similarly Mi2 := {m : em2 = i} denote the sets of edges from and to i respectively. Let

p(i1)k :=
∑

m∈Mi1
pmk and similarly p(i2)k :=

∑
m∈Mi2

pmk denote the total expected number

of edges of class k from and to i respectively. Then the gradients can be found to be

∂Q

∂(Si,U i)
=

K∑
k=1

(
p(i1)k − p·k

eSi+U iW
′
k

fuk

)(
1 W k

)
− (Si,U i)

τs 0

0′ τuIp

 , (10)

∂Q

∂(Ri,V i)
=

K∑
k=1

(
p(i2)k −

∑
m 6∈Mi1

pmke
Ri+V iW

′
k

fvk − eRem1+V em1W
′
k

)(
1 W k

)
− (Ri,V i)

τr 0

0′ τvIp

 ,

(11)

∂Q

∂W k

=
M∑
m=1

pmk

[
Uem1 + V em2 −

1

fuk

n∑
i=1

eSi+U iW
′
kU i

− 1

fvk − eRem1+V em1W
′
k

∑
i 6=em1

eRi+V iW
′
kV i

]
−W k. (12)

At first blush, a derivate based estimation algorithm looks to erase any computational

gains of having a likelihood of O(n). Indeed, evaluating (11) for all i would cost O(nM)

as would evaluating (12) for each k. However, by precomputing certain quantities, these

derivatives can be computed in O(M + n) time.
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The key quantities necessary to make these gradients scalable are as follows. Let

suk :=
n∑
i=1

eSi+U iW
′
kU i, svk :=

n∑
i=1

eRi+V iW
′
kV i, and Hk :=

M∑
m=1

pmk

fvk − eRem1+V em1W
′
k

.

(13)

Then we can equivalently write the gradients in (11) and (12) as

∂Q

∂(Ri,V i)
=

K∑
k=1

(
p(i2)k − eRi+V iW

′
k

(
Hk −

p(i1)k

fvk − eRi+V iW
′
k

))(
1 W k

)
− (Ri,V i)

τr 0

0′ τvIp

 ,

(14)

∂Q

∂W k

=
M∑
m=1

pmk

[
Uem1 + V em2 −

suk
fuk
− svk − e

Rem1+V em1W
′
kV em1

fvk − eRem1+V em1W
′
k

]
−W k. (15)

The cost of precomputing the suk’s, svk’s is O(n), and for the Hk’s, p(i1)k’s, and the

p(i2)k’s is O(M). Once computed, the cost of computing (14) for all i is O(n) and the

cost of computing (15) is O(M), and thus the total cost of computing the gradient of Q is

O(M + n).

For the purposes of verifying the scalability of this GEM algorithm, we took six real

datasets of varying size and for each one ran 25 iterations of the algorithm setting K = 3

and p = 2. Computations were done using R in conjunction with c++ code via Rcpp

(Eddelbuettel and Balamuta, 2017) on an Intel i7-9850H 2.6GHz processor. The first

dataset is the ubiquitous Sampson monk network (Sampson, 1968); the second is a patient

transfer network described in detail in Section 4; the third dataset is the famous 2004

political blogs dataset (Adamic and Glance, 2005); the last three datasets can be found on

the Stanford Large Network Dataset Collection3. An important note here is that with edge

clustering, it only makes sense to cluster on the giant component. Any two edges clearly

should not be clustered if they belong to different components of the graph. Table 1 gives

the number of actors, number of edges, and computational time, and Figure 3 shows the

near perfect linear relationship with respect to the number of actors and edges. The least

squares plane has an R2 equal to 0.998.

3https://snap.stanford.edu/data/
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One last comment is that the initialization of this algorithm as implemented in the

simulation studies and real data analyses was as follows. We set the row vectors of W

to be equally spaced through <p, and then randomly generated S, R, U , and V from a

multivariate normal with mean 0 and covariance Ip. The results did vary somewhat based

on the random starting position, but we found in practice that trying ∼10 or 15 start-

ing positions outperformed more considered (and computationally expensive) initialization

schemes.

Time (sec) n M

Sampson 0.15 18 88

CA 13.25 385 23,821

Political blogs 10.8 1,222 19,089

Wiki-vote 58.05 7,066 103,663

p2p-Gnutella04 31.84 10,876 39,994

p2p-Gnutella25 57.53 22,663 54,693

Table 1: Computing time in seconds for six real datasets with varying number of actors

and edges. These times reflect 25 iterations setting K = 3 and p = 2.

2.3.2 Gradient-based Monte Carlo

Due to the high dimension of the parameter space ((2n + K)(p + 1) + 3) (in addition to

the dimension of Z), we suggest using a gradient-based Metropolis-Hastings step within

a Gibbs algorithm. As mentioned above in (2.3.1), the full conditionals for {Zm}Mm=1 are

independent multinomial draws with probabilities given by (6). The priors for the precision

parameters and α are semi-conjugate, where the full conditionals are given by

τs|· ∼ Γ

(
as + n

2
,
bs + ‖S‖2

2

)
, τr|· ∼ Γ

(
ar + n

2
,
br + ‖R‖2

2

)
,

τu|· ∼ Γ

(
au + np

2
,
bu + ‖U‖2F

2

)
, τv|· ∼ Γ

(
av + np

2
,
bv + ‖V ‖2F

2

)
,

α|· ∼ Dir (α0 +M1, . . . , α0 +MK) , (16)
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(a) (b)

Figure 3: Time to run the GEM algorithm for six real datasets with varying number of

actors and edges. These times reflect 25 iterations setting K = 3 and p = 2. The R2 of the

least squares plane equals 0.998.

where Mk :=
∑

mZmk is the number of edges belonging to the kth cluster. Given

({Zm}Mm=1, τs, τr, τu, τv,α), one can then draw (S,R,U ,V ,W ) using Metropolis-adjusted

Langevin algorithm, Hamiltonian Monte Carlo, etc. While a simpler approach such as a

random-walk Metropolis algorithm may be employed, due to the high dimensionality it is

to be expected that a gradient based approach would lead to quicker convergence (Roberts

and Rosenthal, 1998). The success of this is, of course, predicated on being able to com-

pute the gradient in an efficient manner. Fortunately, we can use similar tricks as those in

Section 2.3.1 to achieve this computational efficiency.

Letting zm ∈ {1, . . . , K} denote the cluster assignment of the mth edge, the partial
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gradient of the full conditional with respect to (Si,U i) is given as

∂ log π(U ,V ,W |·)
∂(Si,U i)

=
∑

m∈Mi1

(
1 W zm

)
−

M∑
m=1

eSi+U iW
′
zm

fuzm

(
1 W zm

)
− (Si,U i)

τs 0

0′ τuIp


=

∑
m∈Mi1

(
1 W zm

)
−
∑
k

Mk
eSi+U iW

′
k

fuk

(
1 W k

)
− (Si,U i)

τs 0

0′ τuIp

 .

(17)

If we precompute

H̃k :=
M∑
m=1

1{zm=k}

fvk − eRem1+V em1W
′
k

,

then the gradient of log π(U ,V ,W |·) with respect to (Ri,V i) is

∂ log π(U ,V ,W |·)
∂(Ri,V i)

=
∑

m∈Mi2

(
1 W zm

)
−

∑
m 6∈Mi1

eRi+V iW
′
zm

fvzm − eRem1+V em1W
′
zm

(
1 W zm

)
− (Ri,V i)

τr 0

0′ τvIp


=

∑
m∈Mi2

(
1 W zm

)
−
∑
k

eRi+V iW
′
k

(
H̃k −

|Mi1 ∩ {m : zm = k}|
fvk − eRi+V iW ′

k

)(
1 W k

)
− (Ri,V i)

τr 0

0′ τvIp


(18)

and with respect to W k is∑
m:zm=k

(
Uem1 + V em2 −

suk
fuk
− svk − e

Rem1+V em1W
′
kV em1

fvk − eRem1+V em1W
′
k

)
−W k, (19)

where suk and svk are as given above in (13).

There are several sources of non-identifiability in the likelihood that must be addressed

when considering the MCMC output. The usual LSM issues arise, namely the invariance

to rotations, reflections and translations of the latent actor positions U and V , and, in the

LSEC, the latent cluster positions W . In addition, the likelihood is invariant to rescaling

W by some constant c and subsequently rescaling bothU and V by 1/c, as well as invariant

to translations of S, R, and the columns of U and V . Finally, the usual mixture model

issues arise with aliasing of the cluster labels.

We can address these issues through post-processing the MCMC output in four steps.

First, we rescale W (`) such that the elements have unit variance, where the (`) superscript
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here and elsewhere will correspond to the `th MCMC draw. We then subsequently rescale

U (`), V (`), τ
(`)
u , and τ

(`)
v appropriately. Second, we perform a Procrustes transformation

(see, e.g., Borg and Groenen, 2005) to rotate the matrix formed by stacking U (`) and

V (`) using the MAP as a reference matrix, and then subsequently rotate W (`). Third,

for each iteration we recenter S(`), R(`), and the columns of both U (`) and V (`). Finally,

we perform Equivalence Classes Representatives algorithm (Papastamoulis and Iliopoulos,

2010) to permute the labels of Z(`); the rows and elements of W (`) and α(`) respectively

are then also permuted accordingly.

3 Simulation Studies

A huge challenge in both clustering and latent space network models is model selection-

choosing the number of clusters in the former, and choosing the dimension of the latent

space in the latter. Our context involves a double model selection, making it necessary

to have both a computationally efficient estimation method as well as an effective selec-

tion criterion. Our GEM algorithm is sufficiently fast to fit multiple K’s and multiple p’s

(the number of clusters and latent space dimension respectively). What remains is find-

ing an effective model selection criterion. We performed a simulation study involving six

scenarios (that is, six methods of generating the data) and for each data set fit 36 models

corresponding to K ∈ {2, 3, . . . , 10} and p ∈ {2, 3, 4, 5}.

In each simulation scenario, there were 400 actors, and overall there was an average

of 9608 edges. Each scenario varied how the actors and edge classes shared features. In

the first four scenarios, the direction of the U i’s and V i’s were drawn from a mixture of

von Mises-Fisher distributions with concentration parameter 50, 50, 50, and 0 respectively,

and their magnitudes were drawn from a gamma distribution with (shape,rate) parameters

(20, 4); the (Si, Ri) pairs were drawn from a bivariate normal distribution with mean 0,

variances equal to 2, and correlation equal to 0.75; and α was set equal to (1/K, . . . , 1/K).

Figure 4 shows the mean directions of the von Mises-Fisher distributions from which the

actors’ latent features were drawn as well as the directions of the edge clustersW . From this

one can see that the number of clusters in the four scenarios are 4, 4, 3, and 4 respectively.
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Note that for the fourth scenario the direction of each U i and V i is uniform. In the first

three scenarios, there are sets of actors that share similar features. The first scenario is

most similar to traditional community detection in which there are groups of actors which

are densely intraconnected and sparsely interconnected. The second and third scenarios

allows the latent edge class features to diverge from those of the actors. The fourth scenario

removes any semblance of groups of actors. The final two scenarios build off of the first and

fourth scenario described above, and have both been modified in the same way. We have

increased p to 3 and added two additional clusters in opposite direction to each other and

orthogonal to the plane displayed in Figure 4 (i.e., the cluster directions are (I3,−I3)′).

To perform double model selection, we tried several strategies. The first three used

a single criterion, BIC, AIC, or ICL (Biernacki et al., 2000), to select both K and p

(we computed all information criteria based on the MAP estimators; see, e.g., Fraley and

Raftery, 2007). These simple strategies uniformly performed poorly. We also combined

either BIC or AIC with either ICL or NEV (Celeux and Soromenho, 1996). Specifically,

we used for each possible p either ICL or NEV to choose K; we subsequently chose the

p (and its corresponding K as chosen by either ICL or NEV) that had the lowest BIC

or AIC. Using two criteria performed better overall, although NEV was clearly inferior

in this simulation study to using ICL. BIC performed poorly in selecting p, as it tended

to overpenalize, always selecting p = 2. The best strategy was to use the combination

of ICL and AIC. For scenario 2, no method performed well in selecting more than two

clusters. This is perhaps not too surprising given the close proximity in angle between

the vectors of W , but unfortunately seems to indicate that clusters that are not well

separated will not be detected as distinct clusters. For the other scenarios, this model

selection approach performed quite well, especially given the difficulty of this double model

selection problem. We present these results in Table 2. To make sure that the clustering

results were accurate when the model selection chose the correct K and p, we computed

the variation of information (VI) (Meila, 2003), normalized mutual information (NMI)

(Danon et al., 2005), and the adjusted Rand Index (ARI) (Hubert and Arabie, 1985).

As a point of comparison, we also fit the method of Ball et al. (2011) to the data and
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 4: Four scenarios of the simulation studies. These figures provide the directions of

the edge clusters (W k’s) in black and denoted by a “C”, and the mean directions of the von

Mises-Fisher distributions from which the actor features (U i’s and the V i’s) were drawn

in gray and denoted by a “A”. Note that in scenario 4, the direction of the actor features

were drawn from a uniform distribution.

performed spectral clustering of the line graph. These comparisons are given in Table 3.

For Scenarios 1 and 5 where the actors’ latent positions are well separated, the line graph

spectral clustering performs slightly better than the LSEC; however, for all other contexts,

LSEC dramatically outperforms the other two approaches. This demonstrates that the

true clustering assignments are being accurately recovered.

In addition, we wished to determine if the latent positions were being accurately recov-

ered. To this end, for each of the six simulation scenarios we plotted the estimated W ’s

along with the true values of W . For each of the estimated latent position matrix, we

found the row permutation and rotation which allowed us to most closely align it with the

true W . Figure 5 shows these plots, which demonstrate accurate recovery of the latent

positions.
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K

Scenario p 2 3 4 5 6 7 8 9 10
Marginal

Probability

1

2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Marginal Probability 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

2

2 0.90 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Marginal Probability 0.90 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00

3

2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Marginal Probability 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4

2 0.00 0.00 0.99 0.004 0.004 0.00 0.00 0.00 0.00 1.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Marginal Probability 0.00 0.00 0.99 0.004 0.004 0.00 0.00 0.00 0.00

5

2 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.02 0.14

3 0.00 0.00 0.00 0.00 0.61 0.12 0.08 0.02 0.02 0.86

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Marginal Probability 0.00 0.00 0.00 0.00 0.61 0.16 0.12 0.06 0.04

6

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.75 0.11 0.10 0.03 0.01 1.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Marginal Probability 0.00 0.00 0.00 0.00 0.75 0.11 0.10 0.03 0.01

Table 2: Simulation study results for double model selection problem using ICL to choose

K and AIC to choose p. The most commonly selected configurations of K and p are given

in bold, and the true configurations are boxed.
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VI NMI ARI

Scenario LSEC BKN LG LSEC BKN LG LSEC BKN LG

1 0.17 0.27 0.14 0.94 0.90 0.95 0.96 0.92 0.97

2 0.98 1.34 1.22 0.64 0.49 0.46 0.62 0.37 0.39

3 0.96 1.33 1.29 0.56 0.39 0.06 0.64 0.42 0.02

4 0.32 1.37 1.64 0.88 0.50 0.16 0.92 0.55 0.10

5 0.42 0.61 0.35 0.88 0.83 0.90 0.91 0.84 0.92

6 0.79 2.22 2.22 0.78 0.37 0.12 0.81 0.38 0.04

Table 3: Simulation study results for evaluating the accuracy in recovering the true cluster

assignments. The VI (lower is better), NMI (higher is better), and ARI (higher is better)

are given for the proposed method (LSEC), the method of Ball et al. (2011) (BKN), and

spectral clustering of the line graph.

4 Illustrative Analyses

4.1 Patient transfer network

We considered a patient sharing network occurring from 2005 to 2011 in the state of Cal-

ifornia. The actors in this network are hospitals, and two hospitals i and j are connected

by a directed edge if i transfers more than one patient to j over the study period. This

network consisted of 385 actors and 13,724 edges. Patient sharing networks are important

to understand due to their role in disease transmission; patients act as a vector for dis-

ease transmission between hospitals and have been shown to cause epidemic outbreaks and

to significantly increase regional hospital acquired infections (Svoboda et al., 2004; Sewell

et al., 2019). As an outbreak emerges, due to the risk of interfacility spread by transfer

patients, public health officials and healthcare professionals need to know which patients

to isolate for disease control or screen for surveillance. By identifying systems of flows in

the patient transfer network, the knowledge of which transfer patients have been previously

tested positive for the infectious disease allows us to better inform isolation or screening

practice. Note that unlike actor-based clustering which would target all incoming transfers
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 5: Simulation study results showing the estimated W (gray circles) and the true W

(orange triangles connected to the origin by segments) providing evidence that the latent

positions are being accurately recovered. (Color online.)

in a set of clustered facilities, edge clustering gives more precision by determining exactly

which patient transfers to screen or isolate.

We fit the LSEC model to the data letting the number of clusters K range from 2

to 15 and letting the dimension of the latent space p range from 2 to 5. We set the

hyperparameters as = bs = ar = br = au = bu = av = bv = α0 = 1. The AIC/ICL strategy

indicated p = 3 and K = 8. Figure 6 shows the estimated latent features U of the hospitals

along with the edges, where the edges have been colored according to their cluster. (U had

a 0.935 correlation with V , so plotting either would lead to similar figures. Note also that

this may be interpreted to mean that hospitals send and receive patients based on similar

features.) The degree to which edge clusters are well-separated can be viewed through W .
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Figure 6: Patient sharing network. The estimated latent positions of the hospitals U are

plotted along with the edges in the network. The edges have been colored according to the

8 clusters identified from fitting the LSEC model to the data. (Color online.)

If the angles between the W k’s are small, then this would indicate that the clusters are not

overly distinguishable from one another, whereas large angles indicate that the clusters are

in fact well-separated. Table 4 gives the angles between the estimated W k’s, which are all

large, indicating well-separated clusters of connections between the hospitals.

There is no ground truth in this data set. However, to investigate whether these esti-

mated systems of flows have any bearing on epidemic outbreaks we simulated epidemics

on the network using a susceptible-exposed-infectious (SEI) epidemic model. These sim-

ulations were based loosely on those done by Karkada et al. (2011). We initially infected

one hospital in the network and allowed the infection to travel from hospital to hospital
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k 2 3 4 5 6 7 8

1 111 115 98 50 41 158 57

2 126 126 61 96 88 106

3 74 155 100 56 123

4 123 133 61 55

5 55 146 69

6 152 97

7 108

Table 4: Patient sharing network. Angles (in degrees) between the estimated cluster vectors

W k. Larger angles indicate well-separated clusters.

over the edges (i.e., by patients being transferred across hospitals). Once infected, a hos-

pital remained in the exposed state for a certain time which was randomly drawn from a

gamma distribution with mean 7 days and standard deviation of 1 day. After this exposure

time, the hospital became infectious and could transmit the disease to other hospitals. This

transmission occurred according to an exponential distribution governed by the overall rate

of patient transfers in the data and a transmission probability of 0.1. Combining these led

to a transmission rate of 0.046/day across edges. The infectious state was considered an

absorbing state, and the simulations were run until all reachable4 hospitals were infected.

All the simulations we looked at gave similar qualitative results, so we only show here

one example. Figure 7a shows for each of the 8 edge clusters the expected number of edges

in that cluster that have led to a new infection over time. That is, for each time point t

and each k ∈ {1, . . . , 8} we compute

M∑
m=1

pmk1{em1 infected em2 at or before t}

Due to the varying number of edges belonging to each group, the terminal/plateau points

are different for each edge cluster. What is clear from these simulations is that as soon

as the disease enters a particular system of flows, there is a rapid increase in the number

4One hospital only transferred out patients while never receiving patients from elsewhere.
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(a) (b)

Figure 7: Epidemic simulation on the patient sharing network. Each curve shows the

expected number of edges for a specific edge cluster which have transmitted disease from

one hospital to another (vertical axis) at or before a particular time (horizontal axis, in

days). The left plot corresponds to the LSEC edge clusters, while the right plot is a random

permutation of those edge clusters. (Color online.)

of edges of that same class that act to transmit disease. We can compare these results

to Figure 7b which shows the same epidemic but with the edge cluster labels permuted.

From the figure based on the permuted edge labels we see much flatter slopes and less

sudden jumps in transmission within a particular system of flows. This would seem to

imply that once an infection is detected in a transfer patient we may leverage the edge

clusters to identify which future transfer patients to expend efforts in screening or isolation

procedures.

4.2 UK faculty friendships

We considered a friendship network amongst faculty members at three schools within a

university located in the United Kingdom (Nepusz et al., 2008). Friendship data was

collected by questionnaire from 81 faculty members, although two failed to note their
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school. We analyzed this data using the LSEC model, setting the hyperparameters to be

as = bs = ar = br = au = bu = av = bv = 1 and α0 = 2. The AIC/ICL strategy indicated

p = 2 and K = 3. However, the second highest ICL indicated K = 4, and this scenario led

to an interesting result which we will describe shortly. After determining K and p via the

GEM algorithm, we then ran a Hamiltonian Monte Carlo-within-Gibbs sampling algorithm

using 15,000 samples as a burn-in period, and keeping every 25th iteration afterwards until

another 15,000 samples were obtained. Figure 8a provides the trace plot of the log posterior,

and 8b shows the 50% posterior credible regions of U (as with the patient transfer network,

there was a strong correlation between U and V leading to similar graphics) and W .

From this figure it appears that there is considerable overlap between the green cluster

and the purple and red clusters, which may well explain why ICL preferred 3, rather than

4, clusters. On average, however, the posterior estimate of the angle between the rows

of W corresponding to the green cluster and the purple and red clusters (53◦ and 74◦

respectively) indicated a reasonable level of cluster separation. The posterior means of the

angles between the rows of W (i.e., cluster vectors) are given in Table 5.

Figure 9 shows the estimates of U with the edges colored by their MAP estimated

cluster assignation. It is apparent that three of the clusters primarily capture within-

school edges. The fourth, however, primarily captures edges connecting faculty of different

schools. That is, while we might expect an actor-centric community detection algorithm

to detect the three clusters corresponding to the three schools, by focusing on the edges

we can determine which edges form within the environment of a specific school, and which

edges take place in a broader setting at the university level.

k 2 (blue) 3 (purple) 4 (green)

1 (red) 119 120 75

2 (blue) 121 136

3 (purple) 53

Table 5: UK faculty friendship network. Angles (in degrees) between the estimated cluster

vectors W k. Larger angles indicate well-separated clusters.
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(a) (b)

Figure 8: UK faculty friendship network. (a) Trace of the log posterior from applying

HMC-within-Gibbs. (b) 50% credible regions for the U i’s (gray) and the W k’s (red, blue,

purple, green). (Color online.)

Although the intention of the proposed methodology is for clustering the edges of a

network, edge clustering can be used to induce a K-dimensional compositional vector for

each of the actors, much akin to a mixed membership vector which may be interpreted to

signify the probability that an actor will select a particular role with which to form edges.

Once the edges are clustered, one may look at each actor i, and for each edge cluster k

compute the number of edges incident on i which belong to the kth cluster. This may be

interpreted as describing where each of the actors have formed edges. Figure 10a provides

the posterior mean of the U i’s connected by the edges of the network where, as in Figure

9, the edges have been colored according to their cluster; the actors have been marked

by a pie graph showing the edge cluster distribution for the edges incident on each actor.

Specifically, these actor-specific allocations correspond to the posterior expected number

of edges in each cluster, given by∑
m∈Mi1∪Mi2

(
P(zm = 1|E), P(zm = 2|E), . . . P(zm = K|E)

)
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As a point of comparison, we also fit a mixed membership stochastic blockmodel

(MMSB) (Airoldi et al., 2008) with four clusters and compared this visually with the mixed

membership induced by the edge clustering (Figure 10b). As a general point, we argue that

while the interpretations of the actors’ compositional vectors resulting from the LSEC and

from those via the MMSB are similar, it is much more interpretable to discuss the actor-

specific edge cluster distributions than the output of a MMSB. For example, in a friendship

network, edge clustering might result in declaring that an individual might have 50% of

his/her frienships formed from a workplace, 30% through a community organization, etc.,

whereas MMSB would result in declaring that an individual has 50% belonging to his/her

workplace, 30% belonging to a community organization, etc. Clearly the individual fully

belongs to each of these groups, but a different proportion of friendships may form within

each context. In the specific case of the UK faculty friendship network, the MMSB fails to

capture the various contexts in which edges are formed. Rather than capturing the fourth

environment in which friendships formed (university), this method split one of the schools

into two, leading to results which are not easily interpreted.

5 Discussion

Although community detection is one of the hottest research topics in network analysis,

most work is focused on clustering the actors of the network. We argue that it is just

as, or perhaps more, natural to think of the edges as belonging to one of many clusters

rather than actors. Edge clustering has the potential to be useful in contexts where it

is of interest to study flow through the network as demonstrated by our simple epidemic

simulation studies. Edge clustering also has the potential to be useful in contexts such

as social networks where edges are assumed to have formed within a particular context or

environment.

We have proposed a novel approach for edge clustering that is based on a probabilistic

generative model over edge exchangeable networks. We have based this on intuitive ideas

of actor and edge features building on the widely used class of LSMs. We derived a

generalized EM algorithm for estimation and provided guidance on gradient-based Monte
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(a) (b)

(c) (d)

Figure 9: The estimated latent features U from fitting the LSEC model to the UK faculty

friendship network and the edges as colored by the MAP edge partition. The three schools

are represented by different shapes. The two respondents who did not indicate a school are

given as hollow triangles. (Color online.)
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(a) LSEC (b) MMSB

Figure 10: The estimated latent features U from fitting the LSEC model to the UK faculty

friendship network. (a) The edges are colored according to the cluster assignments from

the LSEC model, and actors are shown as pie graphs depicting the edge cluster distribution

of those edges incident on each actor. (b) The actors are shown as pie graphs depicting the

mixed membership vectors as estimated from the MMSB model. (Color online.)
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Carlo algorithms which have a computational cost that is linear in the number of actors and

edges. This is in contrast with existing LSMs which have a cost that grows quadratically

with the number of actors. This approach uses a fundamentally different vantage point,

namely at looking at the edges as the units of observations rather than the dyads.

One limitation to the proposed model is that there is no constraint disallowing multiple

edges, although in practice most networks do not allow multiple edges between a single

pair of actors. This is an issue inherent in edge exchangeable network models. However,

because our simulation studies show positive results and our real data analyses give intu-

itive answers, we conclude that ignoring this constraint is negligibly detrimental in gaining

important insights into the latent group structure of network data. Additionally, as is often

the case with network clustering approaches such as blockmodels or BKN, the proposed

model does not explicitly account for transitivity or other higher order dependencies. Ad-

dressing these issues would be an important contribution to what has been presented here.

Finally, while we have described gradient-based Monte Carlo methods for going from point

estimation to inference, Markov chain Monte Carlo methods, regardless of the computa-

tionally efficient gradients presented, will in general be too slow and memory intensive for

large networks. Ergo it would be useful to develop, e.g., a variational Bayes method for

the LSEC model in future work.
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concept of bridgeness in complex networks,” Phys. Rev. E, 77, 016107.

O’Connor, L., Médard, M., and Feizi, S. (2015), “Maximum Likelihood Latent Space Em-

bedding of Logistic Random Dot Product Graphs,” arXiv preprint arXiv:1510.00850.

Papastamoulis, P. and Iliopoulos, G. (2010), “An Artificial Allocations Based Solution to

the Label Switching Problem in Bayesian Analysis of Mixtures of Distributions,” Journal

of Computational and Graphical Statistics, 19, 313–331.

Pereira-Leal, J. B., Enright, A. J., and Ouzounis, C. A. (2004), “Detection of functional

modules from protein interaction networks,” Proteins: Structure, Function, and Bioin-

formatics, 54, 49–57.

35



Pizzuti, C. (2018), “Evolutionary Computation for Community Detection in Networks: A

Review,” IEEE Transactions on Evolutionary Computation, 22, 464–483.

Raftery, A. E., Niu, X., Hoff, P. D., and Yeung, K. Y. (2012), “Fast inference for the

latent space network model using a case-control approximate likelihood,” Journal of

Computational and Graphical Statistics, 21, 901–919.

Rastelli, R., Maire, F., and Friel, N. (2018), “Computationally efficient inference for latent

position network models,” arXiv preprint arXiv:1804.02274.

Roberts, G. O. and Rosenthal, J. S. (1998), “Optimal scaling of discrete approximations

to Langevin diffusions,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 60, 255–268.

Salter-Townshend, M. and Murphy, T. B. (2013), “Variational Bayesian inference for the la-

tent position cluster model for network data,” Computational Statistics & Data Analysis,

57, 661–671.

Sampson, S. F. (1968), “A novitiate in a period of change: An experimental and case study

of relationships,” Unpublished Ph. D. dissertation, Department of Sociology, Cornell

University.

Sewell, D. K., Simmering, J. E., Justice, S., Pemmaraju, S. V., Segre, A. M., and Polgreen,

P. M. (2019), “Estimating the Attributable Disease Burden and Effects of Inter-Hospital

Patient Sharing on Clostridium difficile Infections,” Infection Control and Hospital Epi-

demiology, 40, 656–661.

Shi, C., Cai, Y., Fu, D., Dong, Y., and Wu, B. (2013), “A link clustering based overlapping

community detection algorithm,” Data & Knowledge Engineering, 87, 394 – 404.

Svoboda, T., Henry, B., Shulman, L., Kennedy, E., Rea, E., Ng, W., Wallington, T.,

Yaffe, B., Gournis, E., Vicencio, E., Basrur, S., and Glazier, R. H. (2004), “Public

health measures to control the spread of the Severe Acute Respiratory Syndrome during

the outbreak in Toronto,” New England Journal of Medicine, 350, 2352–2361, pMID:

15175437.

36



Wu, Z., Lin, Y., Wan, H., and Tian, S. (2010), “A fast and reasonable method for com-

munity detection with adjustable extent of overlapping,” in 2010 IEEE International

Conference on Intelligent Systems and Knowledge Engineering, pp. 376–379.

Xie, J., Kelley, S., and Szymanski, B. K. (2013), “Overlapping Community Detection in

Networks: The State-of-the-art and Comparative Study,” ACM Comput. Surv., 45, 43:1–

43:35.

Young, S. J. and Scheinerman, E. R. (2007), “Random dot product graph models for social

networks,” in Algorithms and Models for the Web-Graph, Springer, pp. 138–149.

Zhang, Y., Zhang, Y., Chen, Q., Ai, Z., and Gong, Z. (2018), “True-link clustering through

signaling process and subcommunity merge in overlapping community detection,” Neural

Computing and Applications, 30, 3613–3621.

37


