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Latent Space Models for Dynamic Networks
Daniel K. SEWELL and Yuguo CHEN

Dynamic networks are used in a variety of fields to represent the structure and evolution of the relationships between entities. We present a
model which embeds longitudinal network data as trajectories in a latent Euclidean space. We propose Markov chain Monte Carlo (MCMC)
algorithm to estimate the model parameters and latent positions of the actors in the network. The model yields meaningful visualization
of dynamic networks, giving the researcher insight into the evolution and the structure, both local and global, of the network. The model
handles directed or undirected edges, easily handles missing edges, and lends itself well to predicting future edges. Further, a novel approach
is given to detect and visualize an attracting influence between actors using only the edge information. We use the case-control likelihood
approximation to speed up the estimation algorithm, modifying it slightly to account for missing data. We apply the latent space model to
data collected from a Dutch classroom, and a cosponsorship network collected on members of the U.S. House of Representatives, illustrating
the usefulness of the model by making insights into the networks. Supplementary materials for this article are available online.

KEY WORDS: Embedding; Markov chain Monte Carlo; Network data; Social influence; Visualization.

1. INTRODUCTION

Network analysis, and in particular dynamic network analy-
sis, is a ubiquitous area of study, used by scientists in many dis-
tinct fields (Vivar and Banks 2012). Often studied are dynamic
social networks, which come in a wide variety of forms (see
the Special Issues on Network Dynamics in Social Networks,
January 2010 and July 2012). In this article we consider data
that come in the form of a set of actors and a sequence of sets of
edges, each edge set having been measured at one of multiple
time points. Analyzing dynamic social networks is key to seeing
how friendships form or dissolve, how politicians form loyal-
ties or break ranks with their parties, how co-authorship patterns
develop and change over time, etc. Dynamic networks are also
analyzed in epidemiological contexts (Bansal et al. 2010), in
analyzing terrorist networks (Carley 2006), and much more.

There exist numerous methods of modeling network data
within a statistical framework (for a survey on statistical net-
work models, see Goldenberg et al. 2010). Some of these models
are intended for static networks but have generative processes
which can be thought of as dynamic, in the sense of building
up the graph over a series of time points. Examples of this no-
tion can be found in the rewiring of “small-world” networks
(Watts and Strogatz 1998), the subsequent addition of edges
in an Erdös-Rényi random graph model (Durrett 2007), or the
addition of actors and edges in a duplication-attachment model
(Kumar et al. 2000). Other methods were developed for static
networks and were then extended for the dynamic case. One of
the most well known methods of analyzing static networks is the
exponential random graph model (ERGM) developed by Frank
and Strauss (1986), and much attention is still being given to this
class of models (see, e.g., Bollobás, Janson, and Riordan 2007;
Robins et al. 2007). This was extended to analyzing networks
observed over discrete time intervals by Hanneke, Fu, and Xing
(2010) in the introduction of the temporal ERGM, or TERGM.
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Using continuous time Markov processes, Snijders (1996) began
a series of works corresponding to what is known as stochastic
actor-oriented models. Both of these last two approaches focus
on the use of common network structures or user-defined objec-
tive functions. The last commonly used approach to modeling
networks that we will mention is the latent space model. Latent
space approaches aim to embed network information into some
(usually low dimensional) latent space. Benefits of using such
an approach is that both local and global structures are modeled,
transitivity is inherently incorporated in the model, meaningful
visualizations are obtained, and the output is easily interpreted,
lending itself to much qualitative inference. While the bulk of
the literature on latent space models is concerned with static
networks, in this article we will use this approach to model
longitudinal network data.

The ideas behind latent space models have long been in use.
For example, Nakao and Romney (1993) used multidimensional
scaling to visualize and analyze the latent positions of the actors
in Newcomb’s fraternity data (Newcomb 1956). Two formal la-
tent space models were introduced for static networks by Hoff,
Raftery, and Handcock (2002), one of which placed the latent
actor positions within a Euclidean space, the other placed the
latent locations on a unit hypersphere while giving each actor an
activity level. This latter model was intended to allow for a lack
of reciprocity in directed networks. Estimation was performed
using Markov chain Monte Carlo (MCMC), hence giving the full
posterior of parameters and latent positions. Handcock, Raftery,
and Tantrum (2007) expanded the Euclidean model of Hoff,
Raftery, and Handcock (2002) by allowing the latent space po-
sitions to follow a mixture of normals, hence allowing clustering
to occur simultaneously with embedding in a Euclidean space.
Krivitsky et al. (2009) expanded on this work by allowing asym-
metrical edge probabilities. Schweinberger and Snijders (2003)
used a similar approach as Hoff, Raftery, and Handcock (2002)
but used an ultrametric space rather than a Euclidean or hyper-
sphere space to perform model-based clustering. Further work
was done by Hoff (2005), where the author extended previ-
ous notions of ANOVA models of networks by including as
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interaction effects the hypersphere latent positions from Hoff,
Raftery, and Handcock (2002).

A limited number of works has considered the temporal as-
pect of networks while implementing a latent space approach.
Robinson and Priebe (2012) presented a method of discovering
change points in network behavior via using a k-dimensional
simplex latent space. Foulds et al. (2011) developed a nonpara-
metric infinite feature model, where the features are latent. The
work most related to our proposed approach is that of Sarkar
and Moore (2005), which extended the Euclidean latent space
model of Hoff, Raftery, and Handcock (2002) to dynamic net-
works, though only undirected networks can be analyzed with
this method. They developed a generalized multidimensional
scaling (GMDS) to find the initial latent actor positions across
discrete time points. The authors then furthered this by using a
conjugate-gradient method of optimizing an objective function.
While this is a speedy algorithm and hence can be used for
larger datasets, the estimation is an ad hoc method which makes
limited use of the available data.

In this article, we propose a model which embeds dynamic
directed, or undirected, network data into a latent Euclidean
space, allowing each actor to have a temporal trajectory in this
latent space. Estimation of the model parameters and latent actor
positions occur within a Bayesian framework using MCMC. By
using our approach, the user can observe much more easily how
the network evolves over time, gain insight into global and local
structures, handle missing data, make future predictions, and can
detect the attracting influence one actor has on another actor’s
friendships (a concept we call edge attraction, which will be
discussed later). To improve the speed of the MCMC algorithm
for large networks, we describe an approximation method which
reduces the computational cost.

The remainder of the article is organized as follows:
Section 2 describes the proposed model for dynamic networks.
Section 3 outlines the Bayesian estimation of the model param-
eters and latent actor positions, as well as addressing the issue
of scalability. Section 4 details how to handle missing data.
Section 5 describes how to obtain network predictions. Section
6 gives a method for detecting and visualizing edge attraction.
Section 7 shows simulation results. Section 8 presents the results
from analyzing data collected from a Dutch classroom as well
as from analyzing cosponsorship data collected on members of
the U.S. House of Representatives. Section 9 provides a brief
discussion.

2. DYNAMIC LATENT SPACE MODEL

We assume that data come in the form of (N , {Et : t ∈ T }),
where N is the set of all actors, and Et is the set of edges at time

t. For simplicity let T = {1, 2, . . . , T }. For the majority of the
article it will also be assumed that Et consists of directed edges.
The general idea of the latent space approach is that this time
series of graphs can be represented as a state space model, with a
latent state variable representing the actors as positions in a low-
dimensional Euclidean space. The closer two actors are in this
latent Euclidean space, the more likely they are to form an edge.
This low-dimensional space can be thought of as a characteristic
space where the distance between actors represents how similar
they are (Hoff, Raftery, and Handcock 2002), or as a social
space where the distance between two actors corresponds to the
strength of the relationship between the two.

The notation to be used throughout the rest of the article is as
follows: n = |N | is the number of actors. For a latent space �p,
Xit is the p-dimensional vector of the ith actor’s latent position
at time t, and Xt is the n × p matrix whose ith row is Xit .
Yt = {yijt } is the adjacency matrix of the observed network at
time t, and yijt = 1 if there is an edge from actor i to actor j at
time t and 0 otherwise.

The latent actor positions are modeled by a Markov process
with the initial distribution

π (X1|ψ) =
n∏

i=1

N (Xi1|0, τ 2Ip), (1)

and transition equation

π (Xt |Xt−1,ψ) =
n∏

i=1

N (Xit |Xi(t−1), σ
2Ip) (2)

for t = 2, 3, . . . , T , where Ip is the p × p identity matrix,
N (x|μ, �) denotes the normal probability density function with
meanμ and covariance matrix � evaluated at x, andψ is a vector
of parameters which will be defined shortly.

The observed networks at different time points are condition-
ally independent given the latent positions. This dependence
structure is illustrated in Figure 1. Further, it is assumed that for
any two (distinct) pairs (i, j ) and (i ′, j ′), yijt and yi ′j ′t are inde-
pendent conditioning on (Xt ,ψ). In formulating the observation
equation of our model, we desire two main properties: first, the
probability of an edge from actor i to actor j at time t should
increase as the distance between their latent positions decreases;
second, the probability of an edge should depend on both who
is sending and who is receiving the link, and we should further
be able to determine the importance of each in edge formation;
that is, whether the identity of the sender or the identity of the
receiver is more important in edge formation. To this end, we

Figure 1. Illustration of the dependence structure for the latent space model. Yt is the observed graph, Xt is the unobserved latent actor
positions, and ψ is the vector of model parameters.
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use the formulation

P (Yt |Xt ,ψ) =
∏
i �=j

P (yijt = 1|Xt ,ψ)yijt

· P (yijt = 0|Xt ,ψ)1−yijt =
∏
i �=j

exp(yijtηijt)

1 + exp(ηijt)
, (3)

where

ηijt : = log

(
P (yijt = 1|Xt ,ψ)

P (yijt = 0|Xt ,ψ)

)

= βIN

(
1 − dijt

rj

)
+ βOUT

(
1 − dijt

ri

)
, (4)

and dijt = ‖Xit − Xj t‖ andψ = (τ 2, σ 2, βIN, βOUT, r1:n) are the
model parameters. Here r1:n = (r1, r2, . . . , rn); similar notation
will be used throughout the rest of the article. βIN and βOUT are
global parameters which reflect the importance of popularity and
social activity respectively. The ri’s are positive actor specific
parameters that represent each actor’s social reach and is reflec-
tive of the tendency to form and receive edges. Within the latent
space, there is also the geometrical interpretation of ri forming a
radius around the ith actor, as we will see later. For model iden-
tifiability, the ri’s are constrained so that

∑n
i=1 ri = 1. This pa-

rameterization emulates both the distance and projection models
of Hoff, Raftery, and Handcock (2002) for static networks, given
as ηij = β(1 − dij ) and ηij = β + X′

iXj /‖Xj‖ respectively, by
using the visually appealing and intuitive Euclidean space for
the latent positions while incorporating the individual actors’
“sociability,” or social reach, while also accounting for both
activity and popularity.

Krivitsky et al. (2009) built onto Hoff et al.’s model by in-
cluding additive random individual effects. Here our parameter-
ization links the actors’ individual effects to the latent space, in
the sense that the social reach dampens or augments the effect
of the distance between the two actors, rather than having the
individual actor effects be constant additive effects; thus these
two parameterizations are in fact different, rather than being
subsets of each other. In some sense their model is more flexible

in that an actor has both an indegree effect and an outdegree
effect. Our model can be trivially extended to account for this
by simply allowing r1:n to be replaced by two sets of parameters
r

(IN)
1:n and r

(OUT)
1:n . We applied this more complex model on the

two real datasets presented in Section 8 with no improvement in
model fit. Hence our focus remains on the simpler model, given
in (4).

In the following discussion we make the (reasonable) assump-
tion that both βIN > 0 and βOUT > 0 (the other possible case,
discussed in the supplementary material, is where either βIN < 0
and βOUT > |βIN| or βOUT < 0 and βIN > |βOUT|). The interpre-
tation of the radii that comes naturally from (4) is that ri marks
the radius within the latent social space of the ith actor’s social
reach. This is evident in that if the distance between two actors
are within each other’s radii, that is, dijt < min(ri, rj ), then the
probability of an edge is greater than 1/2; if they are outside
each other’s radii, that is, dijt > max(ri, rj ), then the probabil-
ity of an edge is less than 1/2; and if the distance between
the two actors equals both radii, that is, dijt = ri = rj , then the
probability of an edge equals 1/2. These scenarios are illus-
trated in Figure 2(a). Thus a larger radius implies an increasing
propensity to send and receive ties. This fact is further illus-
trated in Figure 2(b), where the probability P (yijt = 1|Xt ,ψ) is
shown in a contour plot, allowing ri and rj to vary, with distance
dijt = 0.01, βIN = 2 and βOUT = 1/2.

Concerning the global parameters βIN and βOUT, if βIN >

βOUT (βOUT > βIN) then we can conclude that the probability
of an edge from actor i to actor j (from actor j to actor i) is
determined more by the radius of j than by the radius of i. This
is also illustrated in Figure 2(b), where it is apparent that the
probability of an edge from i to j increases much faster when we
fix a value of ri and allow rj to increase than vice versa. Thus if
βIN > βOUT then the edges of the network are determined more
by the popularity of the actors than by their activity, that is,
the identity of the receiver of the edge is more important than
the identity of the sender, and if βOUT > βIN the edges of the
network are determined more by the activity of the actors than
by their popularity, that is, the identity of the sender is more
important than the identity of the receiver.

Figure 2. (a) Illustration of how to interpret social reach parameters r1:n in the case that βIN, βOUT > 0; the probability of an edge from i to k
is less than 1/2, from k to l is greater than 1/2, and from i to j is equal to 1/2. (b) Contour plot of P (yijt = 1|Xt ,ψ), where βIN = 2, βOUT = 1/2
and dijt = 0.01. The point ri = rj = dijt is marked with a dot.
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3. ESTIMATION

3.1 Posterior Sampling

We adopt a Bayesian approach, and hence we wish
to make inferences based on π (X1:T ,ψ |Y1:T ), where ψ =
(τ 2, σ 2, βIN, βOUT, r1:n). We implement a Metropolis-Hastings
(MH) within Gibbs MCMC scheme as suggested by Geweke
and Tanizaki (2001) to sample from the posterior, thus giv-
ing point estimates and uncertainties. We set the priors on
the parameters as follows: assume that βIN ∼ N (νIN, ξIN),
βOUT ∼ N (νOUT, ξOUT), σ 2 ∼ IG(θσ , φσ ), τ 2 ∼ IG(θτ , φτ ) and
(r1, r2, . . . , rn) ∼ Dirichlet(α1, α2, . . . , αn), where IG is the in-
verse gamma distribution. The inverse gamma priors were cho-
sen to be conjugate, and the Dirichlet prior is a natural selection
for such constrained parameters.

The number of MCMC iterations required to reach conver-
gence can be greatly reduced by appropriate initial values of the
latent positions and model parameters. We give a discussion and
suggest initialization strategies in the supplementary material.

To sample via Metropolis-Hastings within Gibbs algorithm,
we draw from the full conditional distributions iteratively. These
conditional distributions are either known in closed form or up
to a normalizing constant and are given in the supplementary
material. The posterior sampling algorithm is

Set the initial values of (X1:T ,ψ) (e.g., to those described in
the supplementary material).

1. For t = 1, . . . , T and for i = 1, . . . , n, draw Xit via MH
using a normal random walk proposal.

2. Draw τ 2 from its full conditional inverse gamma distribu-
tion.

3. Draw σ 2 from its full conditional inverse gamma distribu-
tion.

4. Draw βIN via MH using a normal random walk proposal.
5. Draw βOUT via MH using a normal random walk proposal.
6. Draw r1:n via MH using a Dirichlet proposal.

Repeat Steps 1–6.
Due to the constraint on the radii (

∑n
i=1 ri = 1), it is neces-

sary to, within the MH step, accept or reject all n values simul-
taneously; hence it is important to keep the movements small,
that is, keep the means at the current values and the variance
of the proposal small. Therefore the proposal used to draw the
new values r∗

1:n is another Dirichlet distribution with parameters
(κr1, κr2, . . . , κrn), where the ri’s are the current values and κ

is some large constant.
One last note is that the posterior will be invariant to ro-

tations, reflections, and translations of the latent positions.
Hence any inference must take into account the nonunique-
ness of the estimates. Similar to the approach described in
Hoff, Raftery, and Handcock (2002), we perform a Procrustes
transformation to reorient the sampled trajectories. We set an
(nT ) × p reference trajectory matrix X 0, and after drawing
new Xit for all i and t, we construct from these new draws
the new trajectory matrix X = (X ′

1, . . . ,X ′
T )′. In practice we

used the initial latent positions to construct X 0. The Pro-
crustes transformation on X using X 0 as the target matrix finds
argminX ∗ tr(X 0 − X ∗)′(X 0 − X ∗), where X ∗ is some rotation
of X ; see, for example, Borg and Groenen (2005). By per-
forming the Procrustes transformation on the trajectory matrix,

we obtain a single rotation matrix A with which we use to set
X (�) = XA, where the superscript (�) denotes the stored values
for the �th iteration; that is, we set X(�)

it = A′Xit . By so doing
we are preserving the distances between any actors at any time
points, that is, ‖X(�)

it − X(�)
js ‖ = ‖Xit − Xjs‖ for any actors i and

j and any time points t and s.

3.2 Scalability

Scalability is an issue for latent space models for network
data. For static networks, this issue has been addressed through
using variational Bayes (Salter-Townshend and Murphy 2013)
and also by using case-control principles from epidemiology
(Raftery et al. 2012). This latter method reduced the computa-
tional cost (for static networks) of computing the log-likelihood
from O(n2) to O(n).

The general strategy of the case-control log-likelihood ap-
proximation is to write the log-likelihood as two summations.
Assuming that the network becomes sparser as n gets larger, the
computational cost of the first of the two summations is linear
with respect to n, and the cost of the second is quadratic. The
second summation is then replaced by a Monte Carlo estimate
obtained from a subsequence of the actors, thus making the
overall cost of computing the log-likelihood linear in n.

This method as described by Raftery et al. (2012), however,
cannot be directly extended to longitudinal network data con-
taining missing edge values which is often the case, especially in
social networks. This is because all the links need to be known
a priori. By modifying how the log-likelihood is decomposed
into two summations, we can apply this same method without
knowing all yijt beforehand. The details on this approximation
are given in the supplementary material.

4. MISSING DATA

Missing data in social networks is not uncommon, and can
come in various forms, such as boundary specification, nonre-
sponse, and censoring by vertex degree (Kossinets 2006). Here
we specifically focus on nonresponses, that is, missing edge
values. For static networks there have been a number of meth-
ods proposed (see, e.g., Robins, Pattison, and Woolcock 2004;
Huisman 2009). For dynamic networks, Huisman and Steglich
(2008) compared several methods to handle missing edges in
the context of a stochastic actor oriented model. Handcock and
Gile (2010) developed a theoretical framework for networks
in which only a subset of the dyads are observed; we use this
framework in our discussion and refer the reader to Handcock
and Gile’s article for more details.

Let D denote the sampling pattern; that is, D is the set
of n × n matrices {D1, . . . , DT } where Dijt equals 1 if the
dyad yijt is observed and equals 0 otherwise. Letting Y (obs)

and Y (mis) denote the collection of observed edges and miss-
ing edges respectively, the complete data is (Y (obs),Y (mis),D),
and the incomplete (observed) data is (Y (obs),D). The unob-
served edges Y (mis) are considered missing completely at ran-
dom (MCAR) if P (D|Y (obs),Y (mis), ξ ) = P (D|ξ ), where ξ is
some set of parameters corresponding to the sampling pattern.
If, however, P (D|Y (obs),Y (mis), ξ ) = P (D|Y (obs), ξ ), then the
unobserved edges are considered missing at random (MAR).
The case where the pattern of unobserved edges depends on
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the unobserved edges themselves (called nonignorable missing
data) is a difficult scenario which is beyond the scope of this
article; thus we will continue the discussion assuming that the
missing edges are either MCAR or MAR.

Rubin (1976) discussed weak conditions for which it is
possible to ignore the process that causes missing data.
In our context, we are interested in the posterior distribu-
tion π (X1:T ,ψ,Y (mis)|Y (obs),D); hence if the sampling pat-
tern is ignorable, we may make inference based on the pos-
terior distribution π (X1:T ,ψ,Y (mis)|Y (obs)), that is, X1:T , ψ
and Y (mis) are independent of D given Y (obs). There are
two sufficient conditions that must be satisfied in order for
the sampling pattern to be ignorable (Rubin 1976). First,
the sampling pattern parameters ξ are a priori indepen-
dent with the data (Y (mis),Y (obs)), latent positions X1:T and
model parameters ψ , that is, π (Y (mis),Y (obs),X1:T ,ψ, ξ ) =
π (Y (mis),Y (obs),X1:T ,ψ)π (ξ ). Second, the space of (ξ,X1:T ,ψ)
is a product space, that is, if ξ ∈ �, X1:T ∈ X and ψ ∈ � then
(ξ,X1:T ,ψ) ∈ � × X ×�. If these two conditions are met and
the missing edges are either MCAR or MAR, we have

π (Y (mis),X1:T ,ψ |Y (obs),D)

=
∫

π (D|Y (obs), ξ )π (Y (mis),Y (obs),X1:T ,ψ)π (ξ )dξ∫
π (D|Y (obs), ξ )π (Y (obs))π (ξ )dξ

= π (Y (mis),X1:T ,ψ |Y (obs)).

Handling the missing data is easy when using the MH within
Gibbs sampling scheme of Section 3. Using the observed data
and the current values for the missing data, the full conditionals
for X1:T and ψ are unchanged. The full conditional of Y (mis)

is, for any yijt ∈ Y (mis), determined by π (yijt = 1|X1:T ,ψ) =
1/(1 + exp(−ηijt)), where ηijt is given in (4). That is, including
the missing data in the MH within Gibbs sampling amounts
to an additional draw for each missing yijt from a Bernoulli
distribution with probability determined by (4).

5. PREDICTION

Predicting future links is an important and interesting prob-
lem. Applications include recommender systems, terrorist net-
works, protein interaction networks, prediction of friendship
networks, and more (Kashima and Abe 2006; Liben-Nowell
and Kleinberg 2007; Wang, Satuluri, and Parthasarathy 2007;
Hopcroft, Lou, and Tang 2011).

When considering prediction in the latent space context, it
is of interest to predict for time T + 1 both the edges of the
adjacency matrix YT +1 and the latent space positions XT +1. It is
simple to find point estimates of the latter since

π (XT +1|Y1:T ) =
∫

π (XT +1|XT ,ψ)π (X1:T ,ψ |Y1:T )dX1:T dψ

≈ 1

L

L∑
�=1

n∏
i=1

N (Xi(T +1)|X(�)
iT , σ 2(�)

Ip), (5)

where the superscript (�) indicates the �th draw from the pos-
terior. Hence X̂T +1 := E(XT +1|Y1:T ) ≈ 1

L

∑L
�=1 X

(�)
T . It is as-

sumed that an appropriate burn-in period for the chain has been
accounted for.

A simple way to compute a point estimate of the probabil-
ity of an edge between i and j at time T + 1, P (yij (T +1) = 1),

would be to plug in X̂T +1 along with the posterior means of the
parameters into the observation Equation (4). We can, however,
do a little better by not conditioning on the posterior means
of the model parameters, hence eliminating some unnecessary
uncertainty. We aim, then, to find the marginal distributions
P (Yij (T +1)|Y1:T ,XT +1 = X̂T +1) for all i �= j . This can be esti-
mated as follows:

First, we approximate the joint distribution.

P (yij (T +1), Xi(T +1), Xj (T +1)|Y1:T )

=
∫

π (yij (T +1)|Xi(T +1), Xj (T +1),ψ)π (Xi(T +1),

Xj (T +1)|X1:T ,ψ)π (X1:T ,ψ |Y1:T )dX1:T dψ

≈ 1

L

L∑
�=1

π (yij (T +1)|Xi(T +1), Xj (T +1),ψ
(�))π (Xi(T +1),

Xj (T +1)|X (�)
T ,ψ (�)). (6)

Next the marginal distribution of (Xi(T +1), Xj (T +1))|Y1:T is
found as in (5) and approximated by 1

L

∑L
�=1 N (Xi(T +1)|

X(�)
iT , σ 2(�)

Ip)N (Xj (T +1)|X(�)
jT , σ 2(�)

Ip). Thus the conditional dis-

tribution of yij (T +1)|Y1:T , X̂T +1 is estimated as a weighted
average:

P (yij (T +1)|Y1:T , X̂T +1) ≈
L∑

�=1

w�π (yij (T +1)|X̂i(T +1),

X̂j (T +1),ψ
(�)),

where

w� = N (X̂i(T +1)|X(�)
iT ,ψ (�))N (X̂j (T +1)|X(�)

jT ,ψ (�))∑L
�′=1 N (X̂i(T +1)|X(�′)

iT ,ψ (�′))N (X̂j (T +1)|X(�′)
jT ,ψ (�′))

(7)

and π (yij (T +1)|X̂i(T +1), X̂j (T +1),ψ) is defined in (3) and (4).
This method outperforms the simpler plug in method men-

tioned earlier, as is shown in the supplementary material. The
intuition as to why this is so is that we are using fewer esti-
mated parameters to make predictions, hence introducing less
uncertainty into the prediction estimates.

6. EDGE ATTRACTION

Social influence is a well defined concept in the literature,
which Anagnostopoulos, Kumar, and Mahdian (2008) defined
as “the phenomenon that the actions of a user can induce his/her
friends to behave in a similar way.” Many authors attempt to use
social influence to track the propagation of ideas or behaviors
through a network (e.g., Kempe, Kleinberg, and Tardos 2003;
Leskovec, Singh, and Kleinberg 2006). Tang et al. (2009) de-
scribed a method of determining which actors will influence
which other actors on a variety of topics. Goyal, Bonchi, and
Lakshmanan (2010) proposed a method of labeling each edge
by an influence probability, assuming undirected binary edges.
These works all require data outside of the network, such as,
as phrased by Goyal et al. an “action log.” Here we consider a
novel type of influence, called edge attraction, defined to be the
attracting influence one actor has on another actor’s friendships;
for example, in a social network this is how one person draws
another person into their own social circle. Hence our new type
of influence is how one actor affects the edges of another actor.
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We assume that the way in which one actor can affect another
actor’s movements in the network is manifested in an increased
tendency for the influenced actor to move in the direction of
the influencing actor in the social space. To detect the tendency
for an actor i to move through the social space in the direction
of another actor j, the transition equation for the latent actor
positions is extended by considering a new parameter to describe
the edge attraction between two actors. We will then carefully
define this parameter, implement an appropriate prior, and then
look at posterior probabilities that will help the user determine
whether or not there is edge attraction. We will show that this can
be done by using the same MCMC output as when the transition
equation was assumed to be a random walk. Throughout the
next two sections we consider looking at the actors pairwise,
that is, we look at whether or not a specific actor i is influenced
by another actor j.

6.1 Detection of Edge Attraction

Consider an extension of the transition equation (2) such that
Xit = Xi(t−1) + εit where εit ∼ N (μt , σ

2Ip). In the following,
assume that p = 2. Let θt equal the angle atan2(Xj t − Xi(t−1)),
where atan2 is the common variation of the arctangent function
which preserves the angle’s quadrant, taking a vector rather than
a ratio as its argument. Let Rt be the rotation matrix associated
with θt . We then let μt be of the form

μt = Rt

(
μ

0

)
=

(
cos(θt ) − sin(θt )
sin(θt ) cos(θt )

)(
μ

0

)
, (8)

where μ = ‖E(Xit − Xi(t−1))‖ is some unknown parameter tak-
ing nonnegative values. No edge attraction is equivalent to the
case where μ = 0, and if there does exist some edge attrac-
tion then this will be reflected in some μ > 0. Figure 3 gives
an illustration of this type of edge attraction. The idea here is
that actor i will aim toward wherever actor j is within the latent
characteristic space. If we let the prior on the parameters (ψ, μ)
be independent, that is, π (ψ, μ) = π (ψ)π (μ), then the pos-
terior samples obtained from Section 3.1 can be equivalently
viewed as having come from π (X1:T ,ψ |Y1:T , μ = 0). This is
important because, as will be seen later, we can use these same
draws to make inference regarding the edge attraction existing
between actors i and j. Also note that under the extended tran-
sition equation, the Markov property still holds for the latent
positions, that is, π (Xt |X1:(t−1),ψ, μ) = π (Xt |Xt−1,ψ, μ) (see
the supplementary material for proof).

The prior distribution of μ is chosen to be a mixture of a point
mass on 0 and a continuous component over the positive reals:

π (μ) =
{

p0 if μ = 0
(1 − p0)f (μ) for μ > 0,

(9)

where f is some proper continuous density on (0,∞). Here f will
be assumed for convenience to be the exponential distribution
with mean λ. Then the posterior density is

π (μ|Y1:T ) = π (Y1:T |μ)π (μ)

π (Y1:T )
= π (Y1:T |μ)p0

π (Y1:T )
1{μ=0}

+ π (Y1:T |μ)

π (Y1:T )
(1 − p0)f (μ)1{μ>0}. (10)

For notation, let π0(μ = 0|Y1:T ) = π (Y1:T |μ = 0)p0/π (Y1:T )
and let π+(μ|Y1:T ) = π (Y1:T |μ)(1 − p0)f (μ)/π (Y1:T ). Then

Figure 3. The extension of the transition equation to allow for actor
j’s influence on actor i. Actor i is more likely to move toward actor j. The
circle around Xi(t−1) represents a von Mises distribution for the angle
component of εit ’s polar coordinates, where dark values indicate high
probability regions and light values indicate low probability regions.

π0(μ = 0|Y1:T ) is the point mass posterior probability that
μ = 0. If our prior probability p0 = 1/2 and we find that the
posterior probability is less than 1/2 then this implies the data
is pulling the posterior probability toward the conclusion that
actor i is influenced by actor j.

Since 1 = π0(μ = 0|Y1:T ) + ∫ ∞
0 π+(μ|Y1:T )dμ, we have that

π0(μ = 0|Y1:T ) = 1

1 + ∫ ∞
0 κ(ν)dν

, (11)

where κ(ν) = π+(μ = ν|Y1:T )/π0(μ = 0|Y1:T ). So if we can
find

∫ ∞
0 κ(ν)dν then we can compute π0(μ = 0|Y1:T ). To this

end, we have the following proposition whose proof is given in
the supplementary material:

Proposition 1. For κ(ν) as defined above,∫ ∞

0
κ(ν)dν = E(h(X1:T ,ψ)|Y1:T , μ = 0), (12)

where

h(X1:T ,�) = 1 − p0

λp0
· �(z)√

T −1
σ 2 φ(z)

,

z =
1

T −1

∑T
t=2(X it − X i(t−1))′

( cos(θt )
sin(θt )

)
− σ 2

λ(T −1)√
σ 2/(T − 1)

,

� is the standard normal cumulative distribution function, and
φ is the standard normal density.

The expectation in (12) is taken with respect to the posterior
π (X1:T ,ψ |Y1:T , μ = 0), and hence we can use the posterior
draws already obtained from Section 3.1 to use the following
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approximation:

∫ ∞

0
κ(ν)dν ≈ 1

N

N∑
�=1

h(X (�)
1:T ,ψ (�)). (13)

Combining (11) with (13) we are able to compute the posterior
probability π0(μ = 0|Y1:T ).

The quantity z in Proposition 1 is interesting in that (Xit −
Xi(t−1))′(

cos(θt )
sin(θt )

) is the scalar projection of (Xit − Xi(t−1)) onto
the unit vector whose direction is determined by (Xj t − Xi(t−1)).
Intuition tells us that if these scalar projections are consistently
large then actor j is influencing the way actor i moves through
the social space; the posterior probabilities reflect this intuition
in that large scalar projections lead to small values of π0(μ =
0|Y1:T ).

One last note of practical value is that for edge attraction to
exist in a meaningful way, we must require that the influencing
actor has during at least one observation period brought the
influenced actor within his social circle. This becomes easy
to evaluate by means of the social reaches by requiring that
for edge attraction to exist between i and j, {t : dijt < ri}

⋃{t :
dijt < rj } �= ∅.

6.2 Visualizing the Edge Attraction

Suppose there is evidence from the posterior that μ �= 0.
Then, as mentioned earlier, εit = Xit − Xi(t−1) ∼ N (μt , σ

2Ip).
We can visualize and further interpret this influence by con-
sidering the polar coordinates of εit , dit = ‖Xit − Xi(t−1)‖ and
φit = atan2(Xit − Xi(t−1)). The following proposition, whose
proof is given in the supplementary material, gives the distribu-
tion of (dit , φit ).

Proposition 2. Let Z and W be independent random variables
such that Z ∼ N (μz, σ

2) and W ∼ N (μw, σ 2), and let d =
‖(Z,W )‖ and φ = atan2((Z,W )) be the polar coordinates of
(Z,W ). Then

d ∼ Rice (‖(μz, μw)‖, σ ) ,

φ|d ∼ von Mises

(
d‖(μz, μw)‖

σ 2
, atan2((μz, μw))

)
. (14)

Using this proposition, we see that the polar coordinates
(dit , φit ) of R′

tεit follow

dit ∼ Rice (μ, σ ) , φit | dit ∼ von Mises

(
ditμ

σ 2
, 0

)
. (15)

In other words, we can think of the transition from Xi(t−1) to Xit

as a two step process, where the distance to move is determined
first, and then the angle is chosen. To aid the visualization of
the edge attraction we focus on the von Mises distribution that
determines this angle. Hence we are visualizing the extent of the
edge attraction from j on i by looking at the propensity of actor
i to aim toward actor j. The circle around Xi(t−1) in Figure 3
represents such a von Mises distribution (with mean θt rather
than 0), where dark values indicate high probability regions and
light values indicate low probability regions. Note that if μ = 0

then φit ∼ von Mises(0, 0)
D= Unif(−π, π ). That is, any angle

with respect to actor j is as likely as any other angle and hence

actor i does not tend to angle toward actor j more than any other
direction in the latent social space.

We can use the posterior mean latent positions to estimate
these von Mises distributions, thus obtaining a good visualiza-
tion of the edge attraction. First get μ̂, the estimate of μ, by
averaging over time the scalar projection of (X̂it − X̂i(t−1)) onto
(X̂j t − X̂i(t−1)). Then we can further estimate the T − 1 con-
centration parameters (the concentration parameter in (15) be-
ing ditμ/σ 2) by multiplying this μ̂ by ‖X̂it − X̂i(t−1)‖/σ̂ 2. One
can then plot these estimated von Mises distributions wrapped
around the actors being influenced, such as Figure 7. This type
of plot may become overcrowded when there are multiple in-
fluencing actors; in such a case, for each of, say, m influencing
actors, one could average these T − 1 concentration parameters
over time to obtain one concentration parameter for a summary
von Mises distribution. These m von Mises distributions can
then be plotted to get an overview of the various influences on
the influenced actor. An example of this type of plot can be seen
in the supplementary material.

7. SIMULATIONS

Twenty datasets were simulated, each with the number of ac-
tors n = 100 and the number of time points T = 10. For each of
the 20 simulations we set βIN = 1 and βOUT = 2, and randomly
drew the radii r1:n from a Dirichlet distribution. For 10 of the 20
simulations, 25 actors were randomly selected to be influenced,
each of which was accompanied by another randomly selected
actor to do the influencing; there was no edge attraction incor-
porated in the remaining 10 simulations. Details on how the
data were simulated, along with extra simulation results beyond
those given below, can be found in the supplementary material.

The results from the simulations were compared in several
ways: First, for each simulation the posterior means of βIN

and βOUT were computed as well as the correlation between
the posterior means of r1:n and the truth for each of the 20
simulations. The mean (sd) over all 20 simulations of β̂IN was
0.9172 (0.06207) and for β̂OUT was 2.045 (0.1438). The mean
(sd) correlation between r̂1:n and r

(true)
1:n was 0.9298 (0.06402).

We see then that the posterior means did quite well at estimating
the true values of βIN (1), βOUT (2) and the radii.

Second, the area under the ROC curve (AUC) was computed.
This was accomplished by plugging in the posterior means of
the model parameters and the latent positions into the observa-
tion equations (3) and (4), and then comparing these with the
simulated data Y1:T . Hence this can be considered as a measure
of how well the model fits the data. For each simulation, the di-
rected graphs were also converted to undirected graphs by letting
yijt = max{yijt, yjit } in order that we might apply the method of
Sarkar and Moore (2005). The AUC values for both undirected
and directed networks were then computed using the estimates
from Sarkar and Moore’s method. We similarly computed the
AUC values for the directed network using our method, and,
again using those same estimates, computed the AUC values
for the undirected network by using P ({yijt = 1} ∪ {yjit = 1}).
These results are given in Figure 4(a). We see that all our values
are extremely high, implying that the model fits the data quite
well, and also we see that our method uniformly outperformed
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Figure 4. Results for 20 simulations. (a) AUC using Sarkar and Moore’s method (horizontal axis) and our method (vertical axis) on both
undirected (triangles) and directed (asterisks) networks; (b) Distribution of pairwise distance ratios, comparing estimated latent positions with
true latent positions.

that of Sarkar and Moore on both the directed and undirected
networks.

Third, the pairwise distances from the estimated latent po-
sitions were compared to the pairwise distances from the true
latent positions. That is, for each triple (i, j, t) we can look
at ‖X̂it − X̂j t‖/‖Xit − Xj t‖, giving us T n(n − 1)/2 such ra-
tios for each simulation. Figure 4(b) gives, for each of the 20
simulations, a smoothed curve of the distribution of these ra-
tios. Notice that all these distributions are narrow and centered
around 1, implying that the latent positions from the posterior
means are close to the truth.

For those 10 cases where edge attraction was part of the sim-
ulation, we computed the sensitivity of detecting edge attraction
on those actors which were in truth influenced, and in all 20 sim-
ulations we computed the specificity of not detecting influence
on those actors which were in truth not influenced. The mean
(sd) sensitivity and specificity for the 10 simulations with edge
attraction were 0.952 (0.0316) and 0.832 (0.129). The mean
(sd) specificity for the 10 simulations without edge attraction
was 0.868 (0.116). We see from this that the Bayesian estima-
tion does a very good job at detecting edge attraction without
giving many false positives when no such influence exists.

The supplementary material provides a discussion on sensi-
ble priors for all model parameters except σ 2. It is important
then to determine the sensitivity of the MCMC algorithm to the
values of θσ and φσ . To this end we reran the above simulations
where the shape and scale parameters of π (σ 2) were drawn
from a uniform distribution ranging from 3 to 15 for the shape
parameter and from 0.01 to 2 for the scale parameter. The AUC
for rerunning these 20 simulations in this fashion yielded very
high AUC values, ranging from 0.9407 to 0.9858, averaging
0.9621. Thus it appears that the estimation is quite robust to the
hyperparameters for the prior of σ 2.

In addition to the simulations described above, five larger
datasets were simulated where n = 500 and T = 10. Estima-
tion was performed both using and not using the approxima-
tions outlined in Section 3.2 and in the supplementary mate-
rial, letting n0 = 100, and the AUC was computed to evaluate
model fit. Simulations were analyzed on a UNIX machine with a
2.40 GHz processor. The mean (sd) time to perform the MCMC
analysis with 50,000 iterations using the approximation was, in

minutes, 716 (24), and to perform the MCMC with 50,000 iter-
ations not using the approximation was, in minutes, 2281 (20).
Hence by using the approximations there was a mean (sd) de-
crease in computational time of 68.6% (0.835). The mean (sd)
AUC using the approximation was 0.9618 (0.0048), and not
using the approximation was 0.9679 (0.0109). Thus by using
the approximations of Section 3.2 there is a drastic decrease in
computational time with very little loss in model fit.

8. REAL DATA ANALYSIS

8.1 Dutch Classroom Data

Knecht (2008) conducted a longitudinal study in which stu-
dents aged 11 to 13 years in a Dutch class were surveyed over
four time points, yielding four asymmetric adjacency matrices
where the (i, j )th entry denotes whether student i claims student
j as a friend. Figure 5 shows the graphs from these adjacency ma-
trices. Demographic and behavioral data were also collected on
these individuals. Twenty-six students were recorded, although
one student left the class before the study was completed; this
student was left out of the analysis. Missing edges exist in the
data due to some students not being present during a survey.
This was dealt with as previously described in Section 4.

The trace plots of βIN, βOUT, σ 2, and τ 2 are given in the
supplementary material. A burn-in of 15,000 iterations was re-
moved, leaving a chain of length 85,000. We compared our
method with that found in Sarkar and Moore (2005) by AUC
values. Our method yielded an AUC value of 0.917 vs. 0.8456
from Sarkar and Moore’s method.

The posterior means of βIN and βOUT were 1.29 and 1.00
respectively, implying that popularity was more important in
edge formation. The posterior means of the latent locations are
given in Figure 6. Some interesting features can be noticed by
comparing the latent positions with demographic information.
Figure 6 differentiates the actors’ gender by males as dotted
lines and females as solid lines. This plot corroborates results
shown by Snijders, Van de Bunt, and Steglich (2010) in that
the friendships between two actors of the same gender are more
prevalent. Also, only two of the students are of non-Dutch eth-
nicity, circled in Figure 6, and these two actors are very close
together in the social space. One last interesting feature seen in
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Figure 5. Graphs of Dutch classroom data at, from left to right, times 1, 2, 3, and 4.

Figure 6 regards an interesting link between academic capabil-
ity and social behavior. Each student was assessed and ranked
from 4 (lowest) to 8 (highest) based on academic capabilities at
the end of primary school. There was only one student (actor
9) who was ranked a 4 and one (actor 25) who was ranked an
8. The social behavior of these two individuals, as seen via the
latent space positions, are complete opposites. The student with
the highest ranked capability moves from outside the social net-
work to the center of the social space, while the student with the
lowest ranked capabilities moves directly away from the center
of the social space. The reason actor 25 started outside of the
network may be explained in part by the fact that he had only
gone to primary school with one other student and hence did not
start the school term knowing the others.

Edge attraction was detected in four of the actors. Of note is
the fourth such influenced actor (actor 25), who was unique in
that he was influenced by many of the other actors (9 others).
Figure 7 gives the posterior mean of the latent positions of these
actors with a wrapped von Mises distribution plotted around
actor 25 corresponding to the strongest influencer (largest μ).

Figure 6. Posterior means of latent actor positions for the Dutch
classroom data, arrows indicating the temporal direction of the trajec-
tories. Males’ trajectories are in dotted lines, females’ in solid lines.
Also, two of the students are of non-Dutch ethnicity, and these two
actors’ latent positions are circled. The two students with the low-
est (4) and highest (8) ranked academic capabilities, actors 9 and 25
respectively, are also marked as such.

Plots of the von Mises distributions for each of the individual
influencing actors are given in the supplementary material. From
Figure 7 we can visualize the strength and direction of the
influence, thus yielding detailed information on the local scale
of the network. As mentioned earlier, actor 25 began by only
knowing one other actor (determined by having or not having
gone to the same primary school as the others), and so it is
intuitive that he would be more susceptible to being pulled into
others’ existing social circles, bringing him to the center of the
social space. The von Mises distribution in Figure 7 matches this
intuition in that the edge attraction wanes as time progresses and
actor 25 forms his own social circle. Finally, the results from the
analysis of edge attraction fell in line with the overall gender
and ethnic separation, in that the first three instances of edge
attraction all occurred within the ethnic Dutch girls, and of the
nine actors influencing actor 25 (a male) only one was of the
opposite gender.

Figure 7. Corresponding to the Dutch classroom data, this plot is
zooming in on the posterior means of the latent positions of the influ-
enced actor (circle), student 25, and those actors doing the influencing
(triangles). The circles around the influenced actor are the von Mises
distributions from (15) that help to visualize the influence being exerted
in terms of the direction the influenced actor moves. Wider and darker
areas on the rings indicate higher probability regions.
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8.2 Cosponsorship Data

We analyzed data collected by James Fowler on bill cospon-
sorship of Congressmen in the U.S. House of Representatives
for the 97th to 101st Congresses (see Fowler 2006a,b). There
were a total of 644 members of Congress (MC’s) who served
during these five terms. However, at each time point around
30% of MC’s were not represented (the actual values ranged
from 30.1% to 31.1%). These large proportions of unrepresented
MC’s leads to even larger proportions of missing edges (from
51.2% to 52.5% missing edges). The data were analyzed by let-
ting yijt = 1 if actor j sponsored a bill and actor i cosponsored
it, hence showing support for actor j. The graphs from these
adjacency matrices from time 1 (97th Congress) to 5 (101st
Congress), sans missing data, are given in the supplementary
material.

Due to the large amount of missing data, some care was
needed in initializing the missing edges in the Markov chain.
We modified the preferential attachment method of imputation
described by Huisman and Steglich (2008) by doing the fol-
lowing. We first form an aggregated adjacency matrix Y whose
entries yij are set to one if for any t there is a link from i to
j and set to zero otherwise. Next, for each missing actor i (at
a particular time point t), we assign the probability of a link
from i to j to be proportional to the indegree (averaged over t)
of actor j and inversely proportional to the shortest path length
between i and j in Y . That is, letting kj denote the average inde-
gree of actor j and nij denote the shortest path length between
i and j in Y , the probability of a link from i to j is set to be
P (yijt = 1) = (kj/nij )/(

∑
� �=i k�/ni�). We then look at the av-

erage outdegree of i (rounded to the nearest integer), denoted di ,
and randomly draw di actors from {1, . . . , n} \ {i} using these
probabilities; the corresponding yijt’s are set to be 1. In this way
we obtain initial values for the missing data.

The trace plots of βIN, βOUT, σ 2, and τ 2 are given in the
supplementary material. A burn-in of 250,000 iterations was
removed, leaving a chain of length 1,250,000. Thinning was
done by recording only every tenth iteration. Using the posterior
means to make predictions on Y1:T led to an AUC value of 0.787
vs. 0.7148 from Sarkar and Moore’s method; when applying
Sarkar and Moore’s method we used Y1:T constructed from the
observed edges and imputed edges. From these AUC values we
see that our model fits the data quite well and again outperforms
the existing method.

Many of the congressmen (328 MC’s) analyzed were re-
elected into the 102nd Congress, and so it was possible to
compare predictions with the truth. In addition to the predic-
tions obtained through the methods described in Section 5,
we also considered prediction by using

∑T
t=1 yijt/T to esti-

mate P (yij (T +1) = 1). For both averaging Y1:T and applying our
method, hard predictions were made by letting ŷij (T +1) = 1 if
P̂ (yij (T +1) = 1) > 0.5 and 0 otherwise. Table 1 gives the re-
sults. From this we see that while using a more naı̈ve prediction
method yields higher specificity, it does so at the expense of
correctly detecting the future edges. Our method can better find
the future edges, and also gives the lowest mean squared error
(MSE).

The posterior means of the coefficients, βIN = 0.974, βOUT =
0.147, indicate that popularity was dramatically more responsi-

Table 1. Prediction results for 328 MC’s in our analysis who also
served in the 102nd Congress.

Method Specificity Sensitivity MSE

Averaging Y1:T 0.8014 0.5125 0.2492
P (YT +1|Y1:T , X̂T +1) 0.5962 0.6984 0.2151

ble for creating edges than activity level; that is, the probability
of a cosponsorship is determined mostly by the MC who spon-
sors the bill rather than the MC who is contemplating cosponsor-
ing it. Figure 8 shows the posterior mean latent positions of the
MC’s. Unsurprisingly we see the Republicans and Democrats
occupy different halves of the network space. Both parties seem
to have the majority of their members in the center of the net-
work space along with a scattering of members along the edge
of the network space, implying that both parties have active cen-
tral members which associate with members from both parties,
as well as less active outlying members which interact less with
members of the opposite party.

It is of interest to study the dynamics of the network. To
evaluate the stability of the network we consider the distance
each MC moves during each of the four transitions. Figure 9
gives a boxplot for these distances, and from this we can see
that the distances corresponding to each transition fall within
a similar range, though the transition to the 99th Congress in-
volves somewhat larger moves. There were a few MC’s (rang-
ing from 4.4% to 7.7% of the MC’s) who were above the top
whisker, but these typically were different MC’s at every tran-
sition; only 11 of the MC’s were beyond the top whisker in
two of the transitions, 2 of the MC’s in three of the transi-
tions, and none more than three. All this indicates that the
dynamics of the network remained stable throughout the five
terms.

Figure 8. Posterior means of latent positions for the cosponsorship
data. Latent positions for all 5 Congresses are plotted simultaneously.
Hollow circles are Republicans and solid circles are Democrats. The
surface these points lie upon reflects the political ideological landscape
within the network space. Darker regions correspond to more moderate
ideologies, and lighter regions correspond to more radical ideologies.
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Figure 9. Boxplots of the distances MC’s traveled within the latent
network space during each of the four transitions. The similar ranges
imply that the dynamics of the network are fairly constant throughout
the five terms.

Political ideology, measured from liberal to conservative, is an
extremely important aspect of political science. Much literature
exists on this topic; for example, Poole and Rosenthal (2007)
wrote an entire book on ideology and its effect on Congress.
Levitt (1996) discussed various factors’ effects on roll-call vot-
ing patterns, concluding that personal ideology is the single most
important factor. This relationship between voting patterns and
personal ideology is seen in a vivid way by comparing the latent
positions of the MC’s with their ideologies. Specifically, this
comparison is shown in Figure 8, where the latent positions of
the MC’s are superimposed upon a surface which represents a
political ideological landscape. This surface was obtained in the
following way. Each MC has a particular Nominate score which
is a measure of their political ideology (see Poole and Rosenthal
1985). This score ranges from −1 (liberal) to 1 (conservative).
Using the latent location coordinates, kriging was performed
on the absolute value of the Nominate scores using a spheri-
cal variogram model. This gives us the surface in Figure 8 that
reflects how regions of the latent network space correspond to
radical ideologies or moderate ideologies. In the center of the
network space where the actors are most dense (and hence are
more active in legislation) is an interesting dividing line between
the two parties that reflects a moderate political ideology. We
also see that both parties have a less dense (hence less active in
legislation) group of MC’s which has more radical ideologies.

Edge attraction was detected on 74 of the MC’s. It is intuitive
that an MC would be influenced more by members of his or her
own party than by members of a different party, and indeed this
is the case. Of the influenced MC’s, only 29% were influenced
more by members of the opposite party than by members of their
own party. As an example of an MC influenced by members of
the opposite party, consider Lawrence Coughlin, a Republican
from Pennsylvania. Only 35% of those who exerted influence
on Coughlin were also Republicans, and in fact the average
Nominate score for those exerting influence on Coughlin was
−0.073, that is, Coughlin was influenced mostly by slightly lib-
eral politicians. This influence is manifest in the fact that he is
often referred to as a moderate Republican (e.g., Downey 2001);
his moderate ideology (0.163) is also quantitatively reflected in

having his Nominate score below the first quartile of fellow Re-
publicans, and below the first quartile of the absolute value of the
Nominate scores of all MC’s. In contrast to Coughlin, consider
Sidney Yates, a Democrat from Illinois. 94% of those exerting
influence on Yates were also Democrats, and in fact quite liberal
Democrats; the mean ideology score of Yates’ influencing MC’s
was −0.301 (recall that a negative Nominate score implies lib-
eral ideology). The influence of these liberal MC’s on Yates is
reflected in Yates also being liberal, himself having a Nomi-
nate score (−0.477) below the first quartile of all Democrats
and an absolute score above the third quartile of the absolute
values of all Nominate scores. What is left uncertain is whether
Yates aimed toward liberal Democrats in the latent space be-
cause he himself already had a liberal ideology or whether these
liberal Democrats influenced him to become liberal himself.
The von Mises distributions corresponding to the edge attrac-
tion on both Coughlin and Yates are given in the supplementary
material.

9. DISCUSSION

A latent space model is given for analyzing dynamic network
data. The model provides rich visualization of the dynamics of
the network, giving insight into the characteristics of the actors,
the evolution of the network, and the overall groupings and com-
munities that exist within the network. Unlike existing method-
ology, our model can handle directed edges, missing data, and
can be used to predict future latent positions and future edges,
and detect and visualize edge attraction. We have also given an
approximation method to obtain statistically meaningful esti-
mates in a computationally efficient way.

While only directed graphs have been analyzed, our methods
can easily be used to model undirected graphs. Clearly with
undirected edges there is no distinction between activity and
popularity. This can be reflected in the model by setting βIN =
βOUT in equation (4) and proceeding as before.

While the focus of this article is binary edges, this model can
be easily generalized to dyadic data types other than binary. This
is accomplished by changing the link function just as one would
in the generalized linear model setting. In (4) we see that the link
function η up to this point has been assumed to be the logit of the
conditional mean of yijt, E(yijt|Xt ,ψ). If, for example, we were
dealing with dyadic relations measured in counts, then it may be
better to let η be the log of E(yijt|Xt ,ψ), the canonical link for
a Poisson random variable. A similar approach has been taken
in the static case by Hoff (2005), and in the dynamic case by
Sewell and Chen (2015) for rank-order data; this latter work was
completed after the present article, building on the methodology
proposed here. Other data types may lead to similar adaptations
of the model.

10. SUPPLEMENTARY MATERIALS

Section 1: Parameter Interpretation
Section 2: Estimation
Section 3: Proof of Proposition 6.1
Section 4: Proof of Proposition 6.2
Section 5: Simulation Study
Section 6: MCMC Convergence Diagnostics
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Section 7: Edge Attraction on Actor 25 in Dutch Classroom
Data

Section 8: Cosponsorship Data
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