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ABSTRACT
Estimating risk factors for the incidence of a disease is crucial for understanding its etiology. For diseases caused by enteric
pathogens, off-the-shelf statistical model-based approaches do not consider the biological mechanisms through which infection
occurs and thus can only be used to make comparatively weak statements about the association between risk factors and incidence.
Building off of established work in quantitative microbiological risk assessment, we propose a new approach to determining the
association between risk factors and dose accrual rates. Our more mechanistic approach achieves a higher degree of biological
plausibility, incorporates currently ignored sources of variability, and provides regression parameters that are easily interpretable
as the dose accrual rate ratio due to changes in the risk factors under study. We also describe a method for leveraging information
across multiple pathogens. The proposed methods are available as an R package at https://github.com/dksewell/dare. Our simula-
tion study shows unacceptable coverage rates from generalized linear models, while the proposed approach empirically maintains
the nominal rate even when the model is misspecified. Finally, we demonstrated our proposed approach by applying our method
to infant data obtained through the PATHOME study (https://reporter.nih.gov/project-details/10227256), discovering the impact
of various environmental factors on infant enteric infections.

1 | Introduction

Enteric infections are a significant source of morbidity and
mortality globally. The World Health Organization estimates
that each year there are nearly 1.7 billion cases of childhood
diarrheal disease, with over 440 000 deaths in children under
5 years old [1]. While this disproportionately impacts low- to
middle-income countries, high-income countries, too, are highly
impacted. For example, Clostridioides difficile infections alone
affect roughly 500 000 individuals in the United States each year,
leading to around 30 000 deaths [2]. Obtaining a deeper under-
standing of transmission dynamics and how they vary according
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to individual-level characteristics is critical to understanding dis-
ease etiology [3], which in turn leads to more informed interven-
tion design and health policies.

1.1 | Incidence Estimation

Incidence is one of the most core quantitative epidemiological
measures available to help understand infectious disease trans-
mission dynamics [4]. The simplest approach to describing infec-
tion rates is through the incidence rate, defined to be the num-
ber of new cases over a specified time interval, or, relatedly,
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through the incidence proportion given by the proportion of
at-risk individuals to become infected over a specified time
interval. Ascertaining how incidence varies in subpopulations
associated with specific risk factors in this way is predicated
on several factors, including a clear delineation of the pop-
ulation into subpopulations and population-level surveillance.
Although the latter issue can be addressed through sampling
techniques and established statistical inference procedures, the
former leads to intractability for multiple risk factors, as this
number grows exponentially with the number of individual-level
factors. These two problems—the requirement to sample and
having a large number of partitions of the population—synergize
in that within each subpopulation, sufficient numbers of subjects
must be recruited so as to reliably estimate the rate at which new
cases occur. This is, of course, yet further exacerbated by rare
diseases. To ameliorate these issues, generalized linear models
(GLMs) based on the Poisson distribution have been used, which
makes the additional assumption that the variation in incidence
across subpopulations can (on the log scale) be described mathe-
matically as an additive combination of the subpopulations’ risk
factors [5].

An additional problem with the above approaches arises when
one or more individual-level risk factors are not categorical or
finite in nature. In such a case, either arbitrary thresholding
must occur, or some other model-based approach is taken. Sev-
eral such approaches can be found in the extant literature. Some
researchers turn to logistic regression (e.g., [6]), estimating the
effect of individual-level risk factors on the change in odds of
becoming newly infected over a specified time period. How-
ever, this approach requires that each individual recruited to the
study be observed for the same amount of time, for example,
2 weeks. In some cases, this is feasible, but this is often not
the case due to a variety of reasons (e.g., if study participants
schedule their follow-up time within a varying time window
from baseline, or if it is not possible to precisely schedule bio-
logical specimen collection). Another approach is the use of
survival models, such as the Cox Proportional Hazards model
(e.g., [7]). This approach, however, typically requires that the
new infection causes acute symptoms which allow the infec-
tion to be surveilled passively, and that the incubation period
is either known or negligible. Another approach which is suffi-
ciently flexible to handle varying observation lengths is the use
of the complementary log–log link function in a GLM based
on the Bernoulli distribution (e.g., [8]). By using the log of the
individuals’ time intervals as an offset in the model, one can
estimate the rate at which new cases develop for a given set of
covariates.

1.2 | A Mechanistic View

There are several key steps by which microorganisms in the envi-
ronment result in infecting an individual, each of which is an
important source of variability. First, environmental and behav-
ioral risk factors impact what an individual is exposed to. As a
running example, consider access or lack of access a child has to
a private latrine. Second, these risk factors lead to varying dose
concentrations of the various fomites, vectors, and vehicles to
which an individual is exposed, and combined with stochastic
behaviors, such as the quantity of media consumed or the num-
ber of hand-to-mouth contacts, result in highly variable expected
ingested doses. For example, even after conditioning on latrine
access, the dose concentration of an enteric pathogen on a child’s
hands will vary stochastically based on who else has used the
latrine recently, and what the child happens to touch and how
often on a given day. A third source of variability is in the actual
dose received given the expected ingested dose. For example, con-
ditioning on the dose concentration on a child’s hands and a cer-
tain number of hand-to-mouth contacts, the actual dose ingested
will still vary due to heterogeneity of pathogen concentration on
the hands’ surfaces, which part of the hand is in contact with
which part of the mouth and for how long. Additionally, tem-
poral pathogen-environment interactions can enhance or reduce
pathogen survival in the environment, affecting the viability of
pathogen dose. Finally, pathogens have varying abilities to prop-
agate within a host [9]. Infection “can be described by competing
processes of birth and death within the host, infection resulting
when birth is sufficient to produce a body burden above some
critical level to induce the effect” ([10], p. 268). That is, condi-
tioning on the dose ingested, each pathogen has a random chance
at surviving to be able to cause an infection, affected by the
host’s capacity to mount a rapid and effective innate and adaptive
immune response, including targeted antibodies developed from
prior exposure, vaccination, or in the case of infants passively
transmitted via maternal breastmilk, as well as the host micro-
biome. Examples of these sources of variability are summarized
graphically in Figure 1.

1.3 | Contributions of This Paper

We make the following two arguments. First, as incidence is
fundamentally about describing infection rates in populations
or sub-populations, it fails to address the mechanisms by which
individuals become infected. In incidence models which exam-
ine associations with risk factors, only the first source of vari-
ability listed above, that of the risk factors, is addressed. In the

FIGURE 1 | Sources of variability in potential infections, along with examples of influential factors for each.
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language of Haas et al. [10], such incidence models fail to achieve
biological plausibility as an infection model. If the mechanisms
of infection are the quantities of interest, then dose accrual
rates, rather than incidence rates, ought to be the focus of one’s
analysis.

Second, stating that a unit increase in 𝑥 leads to a 𝜂 increase
in the incidence rate is a fundamentally weaker statement than
stating that a unit increase in 𝑥 leads to a 𝜂 increase in the
pathogenic dose ingested for a given dose–response model. This
claim is based on the fact that having knowledge about the effect
a risk factor has on the dose accrual rate allows one to deter-
mine the effect on the incidence rate, whereas the reverse is
not true.

To address these two points, we propose a novel model for assess-
ing the impact of individual-level features on the dose accrual
rates for the pathogen under study. Our proposed approach,
which we call Dose Accrual Risk Estimation, or DARE, has the
following features.

• By building on Quantitative Microbial Risk Assessment
(QMRA) techniques, we both satisfy the plausibility criteria
given by Haas et al. [10] and account for the salient sources
of variability listed above.

• Rather than focusing on incidence estimation, our approach
directly estimates the rate at which pathogenic dose is
accrued per time unit.

• Our approach can handle varying time intervals between
individuals’ repeated measurements.

• We further provide a method for leveraging information
across the analyses of multiple pathogens that uses recent
work on linear subspace shrinkage techniques.

• Our DARE methodology is available through the R package
dare, available through github.

The remainder of this paper is as follows. Section 2 describes
our proposed longitudinal model with its derivation, along with
an approach for leveraging information across the analyses of
multiple pathogens. Section 3 describes a simulation study ana-
lyzing the estimation performance of our approach. Section 4
illustrates our proposed approach based on a subset of data col-
lected through the PATHOME study [11]. Finally, we provide a
discussion in Section 5.

2 | Methods

2.1 | A Dose Accrual Model

Suppose our study involves 𝑁 at-risk individuals, and for the 𝑖th
individual we observe them at the end of each of 𝑇𝑖 intervals
before either an infection is detected or they exit the study. The
study design dictates the maximum value for 𝑇𝑖, and should an
infection be detected,𝑇𝑖 will be less than or equal to the maximum
allowed value. We will denote the length of these time intervals
as 𝜏it and the binary outcome as 𝑦it, where 𝑦it equals one if after a
period of 𝜏it they are infected and zero otherwise. For an infection

to occur during an exposure window, a subject must ingest one or
more infection-causing pathogens. In addition, for an infection
to occur, one or more of these ingested pathogens must survive
within the host long enough to begin the infection. Based on vari-
ations of these two processes, a plethora of dose–response models
have been developed (see, e.g., Haas et al. [10]). Our proposed
approach is agnostic to the specific dose–response model, in that
what we propose should be compatible with any such model. We
will therefore denote the dose–response model as 𝑃𝜃(⋅), where 𝜃
is the set of associated dose–response parameters.

The two most common dose–response models are the exponen-
tial model and the beta-Poisson model [12]. Note that while we
focus on the most commonly used models, many others may be
considered here as well. See, for example, Namata et al. [13] for
descriptions of other such models. The only parameter of the
exponential dose–response model is the (iid) survival rate of the
organisms, and the model itself is given by

𝑃𝜃(𝐷) ≔ 1 − 𝑒−𝜃D, (1)

where 𝐷 is the expected dose. The beta-Poisson model is pred-
icated on host variability leading to different survival rates.
The beta-Poisson model is then parameterized by, as its name
suggests, the two shape parameters of the beta distribution
describing the between-host distribution of organism survival
probabilities. Thanks to theoretical work in Furumoto and
Mickey [14], the beta-Poisson dose–response model is commonly
approximated as

𝑃𝜃(𝐷) ≔ 1 −
(

1 + 𝐷

𝜃2

)−𝜃1

(2)

If we were to know the mean dose 𝐷it of the 𝑡th exposure period
for subject 𝑖, the conditional likelihood of our data would be
given as

Pr
(
𝑦1,1, . . . , 𝑦𝑁,𝑇𝑁 |𝐷1,1, . . . , 𝐷𝑁,𝑇𝑁

, 𝜃
)

=
𝑁∏
𝑖=1

𝑇𝑖∏
𝑡=1

[
𝑃𝜃

(
𝐷it

)]𝑦it
[
1 − 𝑃𝜃

(
𝐷it

)]1−𝑦it . (3)

In highly controlled experiments, 𝐷it would typically represent
the dose concentration in a given medium being ingested. In
observational studies, however,𝐷it in Equation (3) represents an
agglomeration of pathways. That is, 𝐷it can be thought of as an
expected ingested dose that encompasses the collection of dose
concentration on hands, in water, in milk, in food, and so forth,
as well as behaviors that lead to ingestion such as hand-to-mouth
contacts and quantity of media consumed. 𝐷it should be con-
sidered stochastic for dose densities and time interval-specific
behaviors will not be the same for two individuals with the
same risk factors, nor even the same individual at different
times.

Historically, expected pathogen dose has been modeled using
log-normal distributions [10], and we do not break from this tra-
dition here. Letting 𝑋it denote a 1 × 𝐽 vector of risk factors for
individual 𝑖 during the 𝑡th time interval, the expected ingested
dose, 𝐷it, is a stochastic quantity depending on 𝑋it (while the
actual dose ingested is a separate stochastic quantity captured
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in the dose–response model 𝑃𝜃). Specifically, we model 𝐷it as
follows:

𝐷it ∼ 𝓁𝑁
(
𝑋it𝜷 + log

(
𝜏it
)
, 𝜎2) (4)

where 𝓁𝑁
(
𝜇, 𝜎2) is the log-normal distribution with location

parameter 𝜇 and log-scale parameter 𝜎, and 𝛽 ≔ (
𝛽1, . . . , 𝛽𝐽

)
is

the vector of log-rate regression coefficients. Equation (4) implies
that the rate of accrual of expected dose is

𝑒
𝑋′

it𝛽+
𝜎2

2 (5)

leading to the first and second central moments of the expected
dose over a time interval of length 𝜏it to be

𝔼
(
𝐷it|𝑋it, 𝛽

)
= 𝜏it𝑒

𝑋′
it𝛽+

𝜎2

2 , Var
(
𝐷it|𝑋it, 𝛽

)
= 𝔼2(𝐷it|𝑋it, 𝛽

)(
𝑒𝜎

2 − 1
)

One note of interest is that if the exponential dose–response
model is used, as 𝜎 → 0 we obtain the GLM based on the binomial
distribution with the complementary log–log link function.

In summary, the two dose–response models described above
assume that the number of pathogens ingested follows a Pois-
son distribution given the mean dose. Each pathogen ingested
is assumed to either have a constant survival probability (expo-
nential dose–response model) or host-specific survival probabil-
ity (beta-Poisson dose–response model). The expected ingested
dose itself, due to variability in the environment and host
behavior, follows a log-normal distribution, and this distribu-
tion depends on observable risk factors. In particular, the rate
at which dose is accrued changes by a factor of 𝑒𝛽𝑗 from a unit
increase in the 𝑗th covariate, keeping all other covariates the
same. Together, we obtain the unconditional likelihood of our
data as

Pr
(
𝑦1,1, . . . , 𝑦𝑁,𝑇𝑁 |𝜃, 𝛽, 𝜎2)
=

𝑁∏
𝑖=1

𝑇𝑖∏
𝑡=1∫

∞

−∞

[
𝑃𝜃

(
𝜏it𝑒

𝑋′
it𝛽+𝜎𝑧it

)]𝑦it [1 − 𝑃𝜃
(
𝜏it𝑒

𝑋′
it𝛽+𝜎𝑧it

)]1−𝑦it
𝜙
(
𝑧it
)

dzit (6)

where 𝜙(⋅) is the standard normal probability density function.
We will refer to Equation (6) as the DARE model. Note that in
computing the DARE likelihood, the univariate integrals can be
solved using standard numerical integration methods, such as
Gaussian quadrature.

In the DARE model, there is an important issue of identifia-
bility that must be acknowledged. In both the exponential and
beta-Poisson dose–response models we have perfect confound-
ing involving the intercept term. That is, 𝛽1 (assuming 𝑋it1 =
1∀𝑖, 𝑡) is perfectly confounded with 𝜃 from the exponential model
and 𝜃2 in the beta-Poisson model. We therefore fix the 𝜃 or 𝜃2 to
be 1, and estimate 𝛽1 as an unconstrained (and uninterpretable)
parameter. However, this issue further necessitates some cau-
tion in interpretation of any modeling results. Were we to have
modeled log(𝜃) in the exponential model or − log

(
𝜃2
)

in the
beta-Poisson model1 as a linear combination of our covariate vec-
tor 𝑋it, the corresponding regression coefficients would again be
perfectly confounded with 𝛽. As an anonymous reviewer pointed
out, this may be ameliorated by strong prior information on

model parameters for the dose–response model component and
the dose accrual rate model component. In general, however, as
one interprets any analysis output using the DARE model, one is
bound to determine using context and domain expertise whether
the effect of a specific covariate is on the dose accrual rate or the
survival rate of the pathogens.

2.2 | Combining Results From Multiple
Pathogens

We now expand our discussion to include contexts where we are
measuring multiple pathogens. It will often be the case that a
covariate will act on the rate of dose accrual similarly between
certain pathogens if, for example, two pathogens are often trans-
mitted through the same vector, fomite, or vehicle. Yet a hard
constraint setting these regression coefficients to be equal is
highly implausible. For example, if one pathogen is solely water-
borne, while another pathogen is both waterborne and transmit-
ted through food, both of these pathogens’ rates of accrual will
change similarly with respect to safe water access, yet clearly
there will still be important differences; the former pathogen will
be successfully mitigated through a water intervention, while the
latter has a minimum threshold of effect that cannot reach dis-
ease elimination solely through such a water intervention. In
other words, we wish to shrink certain regression coefficients
toward each other in a data-driven way without imposing unre-
alistic hard constraints of equality. The recent SUBSET method
of Sewell [15] provides tools to accomplish this. The idea is to
find a linear subspace to shrink toward and use exponential tilt-
ing of the prior to induce the desired shrinkage. Unlike most
statistical shrinkage methods which focus on point estimation,
this approach shrinks the entire posterior, thereby influencing all
resulting inference. By adapting SUBSET to our present context
as described below, we are able to leverage information across
pathogen-specific analyses in a data-driven way that, while not
imposing any equality constraints, allows the data to dictate the
degree to which certain parameters ought to be similar across
pathogens.

Let 𝛽(𝑘)𝑗 denote the 𝑗th regression coefficient for pathogen 𝑘,
𝑘 = 1, . . . , 𝐾 , and similarly let 𝜃(𝑘) and 𝜎2

(𝑘) be the dose–response
model parameter(s) and dose variance for the 𝑘th pathogen
respectively. The entire parameter vector of regression coeffi-
cients, dose response parameters, and dose variance is of length
𝑄 ≔ 𝐾𝐽 ′, where 𝐽 ′ ≔ (𝐽 + |𝜃| + 1), and we will denote it as

𝜂 ≔ (
𝛽(1)1, . . . , 𝛽(1)𝐽 , 𝜃(1), 𝜎

2
(1), 𝛽(2)1, . . . , 𝛽(𝐾)𝐽 , 𝜃(𝐾), 𝜎

2
(𝐾)

)
Let 𝐿 denote a matrix whose 𝑄 rows represent the unknown
parameters and whose columns dictate which parameters are free
and which have an equality constraint. We can construct𝐿 in the
following manner, assuming that the 𝐾 pathogens’ intercept, 𝜃,
and 𝜎2 will not be shrunk toward each other. For a set ⊆ [𝐾], let
𝑣𝑀 () denote the𝑀 × 1 column vector such that its𝑚th element
equals 1 if 𝑚 ∈  and 0 otherwise; and let 𝐼(𝑗,) denote the𝑄 ×|| matrix equal to the𝑄 ×𝑄 identity matrix, selecting those ||
columns corresponding to

{
𝐽 ′(𝑘 − 1) + 𝑗 ∶ 𝑘 ∈ }. Finally, for

𝑗 = 1, . . . , 𝐽 let 𝑗 ⊆ [1 ∶ 𝐾] denote the set of pathogens whose
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FIGURE 2 | Illustration of the matrix𝐿 to shrink certain parameters toward equality for certain pathogens. The intercept, 𝜎2, and 𝛼 are not shrunk;
the coefficients for 𝑋1 are shrunk toward each other; and the coefficients for 𝑋2 are shrunk toward each other for pathogens 2 and 4 only. The subsets
𝑗 are labeled above, while the parameters being constrained are labeled below.

𝑗th coefficients we wish to shrink toward each other, and 𝐶
𝑗

denote its complement.2 Then we can set 𝐿 to be

𝐿 ≔ (
𝐼(1, [𝐾]), 𝐼

(
2,𝐶2

)
, 𝑣𝐾

(2
)
⊗ 𝑣𝐽 ′

(
{2}

)
,

. . . , 𝐼
(
𝐽 ,𝐶

𝐽

)
, 𝑣𝐾

(𝐽 )⊗ 𝑣𝐽 ′ (𝐽 ), 𝐼
(
𝐽 + 1, [𝐾]

)
, . . . , 𝐼

(
𝐽 ′, [𝐾]

))
(7)

The linear subspace we wish to shrink toward is span(𝐿).
Only the regression coefficients that have a 𝑆𝑗 ≠ �0 experience
shrinkage.

As an example, consider the matrix image of 𝐿 given in Figure 2,
where there are four pathogens; three covariates consisting of the
intercept, 𝑋1, and 𝑋2; the intercepts are not shrunk toward each
other; all 𝑋1 coefficients are shrunk toward each other; and the
𝑋2 coefficients are shrunk together for only pathogens 2 and 4.
That is, 1 = �0, 2 = {1,2,3,4}, 3 = {2, 4} (and 𝜎2 and 𝛼 do not
experience shrinkage).

The SUBSET prior multiplicatively changes the joint prior on 𝜂
by a factor of

exp
{
−𝜈

2
𝜂′
(
𝐼𝑄 − 𝐿

(
𝐿′𝐿

)−1
𝐿′

)
𝜂

}
, (8)

which effectively penalizes areas of the parameter space distant
from the linear subspace, where 𝐼𝑄 is the 𝑄 ×𝑄 identity matrix,
and 𝜈 is a positive valued scalar that determines the level of
shrinkage. The value of 𝜈 can be selected in a data-driven way by
maximizing the Bayes factor (see [15], for details). If after analyz-
ing the pathogens separately we denote the mode and the hessian
of the negative log posterior for 𝜂 as 𝑚𝑛 and Ω𝑛 respectively, then
the large sample approximation of the joint posterior of 𝜂 under
the SUBSET prior induced by 𝐿 is given by

𝜂|data ∼ 𝑁
(
𝑚̃𝑛, Ω̃

−1
𝑛

)
,

where Ω̃𝑛 ≔ Ω𝑛 + 𝜈
(
𝐼𝑄 − 𝐿

(
𝐿′𝐿

)−1
𝐿′

)
,

𝑚̃𝑛 ≔ Ω̃−1
𝑛
Ω𝑛𝑚𝑛 (9)

3 | Simulation Study

We wished to see how well we could estimate the unknown
regression coefficients of the DARE model using the beta-Poisson

5 of 12
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dose–response model, as well as determine how well the com-
plementary log–log binomial GLM- the closest existing model to
DARE- can recover the true parameter values. The true values
of 𝛽 in our simulation study were (−4.6,0,0.5,1) corresponding to
an intercept and three covariates, each of which were randomly
drawn for each individual from a standard normal distribution.
We generated data according to both the exponential and the
beta-Poisson. We considered all combinations of 𝜎 ∈ {1,2,3} and-
for the beta-Poisson model- 𝜃1 ∈ {1,2,3}. These values, excluding
the non-intercept regression coefficients, were selected to resem-
ble the average values of those estimated from the PATHOME
data described in Section 4, for which the average intercept (taken
over all pathogens and age groups) was −4.6, the average 𝜎 was
3.0, and the average 𝜃2 was 2.5.

To evaluate our approach, we computed the coverage rates of
the 95% credible intervals and examined the estimated regres-
sion coefficients. For each dose–response model, we simulated
1000 data sets. Each data set included 215 subjects, each mea-
sured at times 1, 3, 5, 7, and 14 or until an infection was detected;
again, these values were selected to mimic the PATHOME study
described in Section 4.

For both the DARE model and the complementary log–log GLM,
we used weakly regularizing priors in order to provide numerical
stability without unduly influencing the posterior. Specifically,
we used a𝑁

(
0,2.52) prior for the regression coefficients with the

exception of the intercept for which we used a 𝑁
(
0, 102) prior.

For the DARE model fits, we used a gamma prior with shape and
rate both equal to 2 for 𝜎 and an exponential with mean 1 for 𝜃1.

Figure 3 shows the coverage rates for the GLM as well as the
DARE model using 95% central credible intervals. When 𝜎 = 1,
the GLM has lower than nominal but respectable coverage rate.
However, for larger values of 𝜎 the coverage becomes unaccept-
ably low. As 𝜃1 increases, the coverage rate decreases, but not
as severely as with increases in 𝜎. Meanwhile, the beta-Poisson
DARE model appears to maintain the nominal coverage rate,

even when the dose–response model is misspecified. However,
this comes at the expected cost of increased CI widths, as seen in
Figure 4.

Figure 5 graphically displays the estimated regression coefficients
from both the DARE and GLM model fits. From this we see that
the GLM estimates tend to be negatively biased for non-zero coef-
ficients while the DARE estimates tend toward a positive bias.
However, while the DARE bias appears relatively stable across
values of 𝜎 and 𝜃1, the negative bias of the GLM gets progressively
worse as 𝜎 increases.

To determine the effect of model-misspecification on the
expected dose, we conducted an additional, smaller, simulation
study very similar to the one above with the following exceptions.
First and foremost, we have replaced the error distribution on
log

(
𝐷𝑖

)
from normal (see Equation 4) to a 𝑡 distribution with 5

degrees of freedom as well as to a zero-mean skew-normal dis-
tribution with tilting parameter equal to 5. Second, for simplicity
we limited the true 𝜎 to equal 2 and the dose–response model
to be beta-Poisson with 𝜃1 = 2. The results matched closely with
those results described above. The coverage rates were 0.97 and
0.94 for the 𝑡 and SN distributions respectively, with average CI
widths of 1.1 and 0.9 respectively. The estimates themselves seem
to show the same overall patterns as shown in Figure 5, including
the upward bias for the non-zero coefficients 𝛽2 and 𝛽3.

4 | Enteric Infections in Infants

The Pathogen Transmission and Health Outcome Models of
Enteric Disease (PATHOME) study aims to use a One Health
approach to better understand enteric pathogen transmission in
low- to middle-income countries. Infants from 0 to 12 months
old and their households were recruited into the PATHOME
study from low-income and middle-income neighborhoods in
Nairobi and Kisumu, Kenya. In each city, we selected house-
holds from both low and middle-income neighborhoods. At

FIGURE 3 | Simulation study results for the coverage rate of 95% credible intervals aggregating over 𝛽1, 𝛽2, and 𝛽3, comparing a GLM with the
complementary log–log link with DARE based on the beta-Poisson dose–response model. The true model is given in the form bp

(
𝜎, 𝜃1

)
or exp(𝜎) for

the beta-Poisson and exponential dose–response models respectively. The nominal rate (0.95) is given in the dashed gray line.

6 of 12 Statistics in Medicine, 2025
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FIGURE 4 | Simulation study results for the central credible widths of 95% average credible intervals aggregating over 𝛽1, 𝛽2, and 𝛽3, comparing a
GLM with the complementary log–log link with DARE based on the beta-Poisson dose–response model. The true model is given in the form bp

(
𝜎, 𝜃1

)
or exp(𝜎) for the beta-Poisson and exponential dose–response models respectively.

FIGURE 5 | Simulation study results for the point estimates of the three regression coefficients (𝛽1 = 0, 𝛽2 = 0.5, and 𝛽3 = 1), comparing a GLM
with the complementary log–log link with DARE based on the beta-Poisson dose–response model. The true model is given in the form bp

(
𝜎, 𝜃1

)
or

exp(𝜎) for the beta-Poisson and exponential dose–response models respectively. The true values are given by the dashed gray lines.

the time of this study, we obtained microbiological data on
214 infants.

On the first day of participating in the study, caregivers were given
a survey on socioeconomic conditions, behaviors, and house-
hold health. The variables we analyzed included city, socioe-
conomic status of the neighborhood (SES), whether the house-
hold’s compound flooded, whether the household owned domes-
tic animals,3 whether animals not owned by the household

entered their compound, and whether the family had access to
a private latrine. These data elements are summarized in Table 1.

For each infant, diapers were provided to the caregivers in order
to later collect stool samples on days 1, 3, 5, 7, and 14. If a stool
was unavailable on a prespecified day, field staff would return the
subsequent day to attempt diaper collection. The average (stan-
dard deviation) number of stool samples collected per child was
4.1 (1.2), and the counts of diapers collected on each day since
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TABLE 1 | Summary statistics for infants enrolled in the PATHOME study.

Age (0,90] (90,180] (180,270] (270,360]

Number of infants 47 51 51 65

City (%)
Kisumu 21 (44.7) 20 (39.2) 19 (37.3) 22 (33.8)
Nairobi 26 (55.3) 31 (60.8) 32 (62.7) 43 (66.2)

SES (%)
Lower class 24 (51.1) 21 (41.2) 24 (47.1) 35 (53.8)
Middle class 23 (48.9) 30 (58.8) 27 (52.9) 30 (46.2)

Flood (%)
No 42 (89.4) 43 (84.3) 42 (82.4) 56 (86.2)
Yes 5 (10.6) 8 (15.7) 9 (17.6) 9 (13.8)

Household owns animals (%)
No 42 (89.4) 41 (80.4) 45 (88.2) 54 (83.1)
Yes 5 (10.6) 10 (19.6) 6 (11.8) 11 (16.9)

Neighborhood animals enter compound (%)
No 33 (70.2) 33 (64.7) 36 (70.6) 49 (75.4)
Yes 14 (29.8) 18 (35.3) 15 (29.4) 16 (24.6)

Latrine (%)
Private 35 (74.5) 40 (78.4) 37 (72.5) 48 (73.8)
Public 12 (25.5) 11 (21.6) 14 (27.5) 17 (26.2)

enrollment are given in Figure 6, stressing the importance of
methods that can accommodate varying time lags between obser-
vations. Each stool sample was analyzed by quantitative molec-
ular detection methods targeting unique pathogen-specific gene
sequences. While pathogen presence/absence was assigned for
19 pathogens, most were too sparse to be used in our analy-
ses given our sample size of 214 households at the time of this
work. The pathogens included in this analysis were Enteroag-
gregative E. coli (EAEC), Enterotoxigenic E. coli (ETEC), typi-
cal enteropathogenic E. coli (tEPEC), atypical enteropathogenic
E. coli (aEPEC), Shiga producing E. coli (STEC), Campylobac-
ter jejuni (C. jejuni), Salmonella, and Shigella. The numbers of
infections present at baseline, new infections (as defined to be
an absence at baseline with a positive detection at some later
follow-up), and no infections during the study interval are given
in Table 2.

We fit the DARE model to each of the eight pathogens, and sub-
sequently applied the SUBSET method described in Section 2.2
to leverage information across pathogens, selecting the amount
of shrinkage based on Bayes factors. We limited shrinkage of the
regression coefficients relating to animals to those for which ani-
mals have been shown to act as a vector, namely aEPEC (e.g.,
[16]), STEC (e.g., [17]), ETEC (e.g., [18]), C. jejuni (e.g., [19]),
and Salmonella (e.g., [20]). As infants of various ages are likely
to experience different exposures, we disaggregated infants into
3-month age groups: 0–3, 4–6, 7–9, and 10–12 months of age.

To assess the goodness-of-fit of the DARE model based on
the beta-Poisson dose–response submodel, we computed the

Bayesian posterior predictive p-value using the 𝜒2 discrepancy
as a test statistic [21] for each pathogen and each age group. All
p-values were between 0.20 and 0.73, indicating a good fit of the
DARE model to the PATHOME data (values between 0.05 and
0.95 are typically considered to indicate reasonable fits of the
data [22]).

Figure 7 shows the point estimates and credible intervals
for the dose accrual rate ratios. Only animal ownership dis-
played statistical significance, and interestingly this occurred
in 7–9 month-aged infants, when infants typically begin to
crawl, but this relationship seemed to disappear in 10–12 month
infants. For ETEC, aEPEC, STEC, C. jejuni, and Salmonella, we
estimated the dose accrual rate to be 5.3, 4.6, 6.0, 5.0, and 5.0 times
higher, respectively, for those whose households owned animals
compared to those whose households didn’t. The posterior prob-
abilities that these rate ratios were greater than one exceeded 0.99
for these five pathogens.

We also examined the effect of animal ownership on incidence
proportion for these five pathogens, holding all other covariates
fixed at their modal value; these values are given in Figure 8. For
ETEC, aEPEC, STEC, C. jejuni, and Salmonella respectively, the
incidence proportion rate for 7–9 month olds was estimated to be
3.2, 2.5, 3.3, 2.5, and 2.6 times higher for those whose households
owned animals compared to those whose households did not. It
is sensible that animal ownership was not significant for younger
age groups as infants begin to learn to crawl around 7 months of
age [23]. This suddenly gives them much more access to animal
feces on the ground as well as soil, both indoors and outdoors in
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FIGURE 6 | Number of infant diapers collected by day, broken down by age.

TABLE 2 | Pathogen detection summary for infants enrolled in the
PATHOME study.

Pathogen
Present at
baseline

New
infection

No
infection

EAEC 107 54 53
ETEC 35 33 146
tEPEC 14 19 181
aEPEC 41 38 135
STEC 15 27 172
Campylobacter jejuni 18 16 180
Salmonella 39 37 138
Shigella 60 29 125

the compound, which can be contaminated by animal feces; in
ongoing work we have found roughly half of soil samples taken
from these PATHOME households (regardless of SES) were pos-
itive for E. coli, roughly half were positive for Salmonella, and
roughly 10% were positive for Shigella. This is also consistent with
observed infant behaviors described by Tumwebaze et al. [24],
showing that the odds of contacting animal feces was ≈2.5 times
greater for 7–10 month olds than 0–3 month olds and ≈4 times
greater odds of being exposed to surfaces contaminated with ani-
mal feces. The effect of animal ownership was not significant for
the 10–12 month age group, and this might be because of some
degree of immunity built up during the prior months of life or
because it is simply a false negative result.

5 | Discussion

Enteric disease is a significant source of morbidity and mortality
globally, especially in children living in low- to middle-income
countries. Enteric diseases occur through the ingestion of

pathogens, and understanding how various risk factors affect
dose accrual rates is vital to developing effective interventions.
We have proposed a novel approach to estimating the effect
individual-level characteristics have on pathogenic dose accrual
rates. Our approach provides a biologically plausible infection
model that attempts to account for the four sources of variability
we have described- risk factors, dose concentration, number of
pathogens ingested, and pathogen survival rate (see Figure 1). In
contrast to incidence models, our approach focuses on the mech-
anisms of infections, and by modeling the dose accrual rates we
can make stronger statements than simply estimating incidence
rates.

Our approach allows measurements taken at unevenly spaced
time points, can flexibly handle various disease-appropriate
dose–response models, and our simulation study suggests that
the coverage rate is maintained at or very nearly at the nominal
rate even under misspecification of the dose–response model. We
have further provided a method for leveraging information across
multiple pathogens within a single study. The priors described in
the simulation study were the same used in the PATHOME data
analyses. However, more informative priors can and should be
used should such information exist from prior studies or domain
expertise.

We anticipate in most cases it will be clear if a risk factor may have
an effect on dose accrual rates vs. within-host pathogen survival
probability. In such cases, parameter interpretability of DARE is
a strength, as the exponentiated regression coefficients provide
the dose accrual rate ratio corresponding to a unit increase in the
covariate of interest, holding all other covariates constant. How-
ever, interpretability is a limitation of our proposed approach in
cases where the risk factor may affect both the dose accrual and
the dose survival rate. There is perfect confounding in this situa-
tion. Intuitively this makes sense and appears to be unavoidable,
since without exceedingly granular microbiological data collec-
tion procedures, it is not possible to disambiguate the number
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FIGURE 7 | Dose accrual rate ratios for infants living in Kisumu and Nairobi, Kenya. The reference categories for “Middle”, “Nairobi”, and
“Toilet-public” are low-class neighborhood, Kisumu, and access to a private toilet, respectively. “Animals-nb” refers to whether neighborhood animals
enter the compound, and “Animals-own” refers to whether the household owns domestic animals.

of pathogens ingested from the pathogens’ survival rates, when
both survival and dose accrual depend on the same factor(s). It is,
however, still possible to understand the general pattern (positive
or negative) in the incidence rate due to such a risk factor, even if
the precise cause is unknown.

Another potential limitation is the simplifying assumption that
each individual’s time intervals are independent. We feel this
is typically a reasonable assumption because of two factors.

First, correlation within an individual can typically be cap-
tured by measuring appropriate covariates. Second, there is
an enormous amount of stochasticity in what pathogens are
encountered and in what density, what behaviors and behavioral
combinations occur (e.g., number of times touching a surface
+ mouthing hands), and so forth, and this variation ought to
overwhelm any remaining individual-level correlation. Yet if this
assumption does not hold, further extensions of the DARE model
are required.

10 of 12 Statistics in Medicine, 2025
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FIGURE 8 | Estimated 14-day incidence proportion by domestic animal ownership, holding all other covariates fixed at their modal value.

The DARE model provides an advancement over simpler inci-
dence models, allowing a better and more nuanced understand-
ing of how risk factors lead to higher infection rates. Our pro-
posed methods can be implemented in the R programming
language [25] via the R package found at https://github.com/
dksewell/dare.
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Endnotes
1 Note that as − log

(
𝜃2
)

increases, or equivalently 𝜃2 decreases, the sur-
vival probability of each organism increases.

2 Note that 𝑗 could be the empty set, in which case no shrinkage is per-
formed on the 𝑗th regression coefficients.

3 This included chickens, ducks, pigs, goats, sheep, cows, dogs, rabbits,
donkeys, and turkeys.
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